Документ подписан простой электронной подписы ТЕНТСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА

Информация о владельце

ФИО: Зайко Татьяна Ивановна

Федеральное государственное бюджетное

должность: Ректор Дата подписания: 10.10.2024, 15:35:43 Уникальный программный ключ: ибирский государственный университет водного транспорта"

cf6863c76438e5984b0fd5e14e7154bfba10e205

Б1.В.18

Технология технического обслуживания и ремонта судов

рабочая программа дисциплины (модуля)

Закреплена за кафедрой Теории корабля, судостроения и технологии материалов

Образовательная

26.05.05 Специальность "Судовождение"

программа

Специализация "Судовождение на внутренних водных путях и в прибрежном

плавании с правом эксплуатации судовых энергетических установок"

год начала подготовки 2023

Квалификация

инженер-судоводитель

Форма обучения

заочная

Общая трудоемкость

33ET

Часов по учебному плану

108

Виды контроля на курсах:

в том числе:

12

зачеты 5

аудиторные занятия 94 самостоятельная работа

Распределение часов дисциплины по курсам

Курс	4	5	Итого	
Вид занятий	УП	РΠ		
Лекции	6	6	6	6
Практические	6	6	6	6
Иная контактная работа	2	2	2	2
Итого ауд.	12	12	12	12
Контактная работа	14	14	14	14
Сам. работа	94	94	94	94
Итого	108	108	108	108

Рабочая программа дисциплины

Технология технического обслуживания и ремонта судов

разработана в соответствии с ФГОС:

Федеральный государственный образовательный стандарт высшего образования - специалитет по специальности 26.05.05 Судовождение (приказ Минобрнауки России от 15.01.2018 г. № 192)

составлена на основании учебного плана образовательной программы:

26.05.05 Специальность "Судовождение"

Специализация "Судовождение на внутренних водных путях и в прибрежном плавании с правом эксплуатации судовых энергетических установок"

год начала подготовки 2023

Рабочую программу составил(и):

д.т.н., ст. преподаватель, Мензилова М.Г.

Рабочая программа одобрена на заседании кафедры Теории корабля, судостроения и технологии материалов

Заведующий кафедрой Лебедев Олег Юрьевич

	1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ
1.1	Для освоения дисциплины обучаемый должен знать и иметь навыки работы с механизмами.
1.2	
1.3	Уметь осуществлять техническое обслуживание и ремонт, таких как разборка, настройка и сборка механизмов и оборудования;
1.4	
1.5	Владеть проектными характеристиками и выбором материалов, используемых при изготовлении и ремонте судов и оборудования.

	2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП				
Ці	икл (раздел) ООП: Б1.В				
2.1	Требования к предварительной подготовке обучающегося:				
2.2	Дисциплины и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:				
2.2.1	Судовые двигатели внутреннего сгорания				
2.2.2	Судовые турбомашины				
2.2.3	Судовые котельные и паропроизводящие установки				
2.2.4	Судовые вспомогательные механизмы, системы и устройства				
2.2.5	Теория и устройство судна				
2.2.6	Электрооборудование судов				
2.2.7	Судовые холодильные установки и системы кондиционирования воздуха				
2.2.8	Основы автоматики и теории управления техническими системами				
2.2.9	Материаловедение и технология конструкционных материалов				

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

В результате освоения дисциплины обучающийся должен

3.1	Знать:
3.1.1	Конструкцию судового оборудования и механизмов, необходимого для поддержания онных в рабочем состоянии
3.2	Уметь:
	Осуществлять техническое обслуживание и ремонт, таких как разборка, настройка и сборка механизмов и оборудования
3.3	Владеть:
3.3.1	Навыками для сборки, обслуживания и ремонта судов и оборудования

	4. СТРУКТУРА ДИСЦИПЛИНЫ (МОДУЛЯ)				
Вид занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Литература	ПрПо дгот
Раздел	Раздел 1. Технология технического обслуживания и ремонта судов				
Ср	Основные понятия и определения /Ср/	5	5	Л1.1 Л1.2 Л1.3Л3.1 Э1 Э2 Э3	0
Лек	Классификация судов /Лек/	5	0,5	Л1.1 Л1.2 Л1.3 Э1 Э2 Э3	0
Пр	Классификация судов /Пр/	5	0,5	Л1.1 Л1.2 Л1.3 Э1 Э2 Э3	0
Ср	Классификация судов /Ср/	5	5	Л1.1 Л1.2 Л1.3Л3.1 Э1 Э2 Э3	0
Лек	Тенденции в составе флота. Развитие промышленной базы судоремонта /Лек/	5	0,5	Л1.1 Л1.2 Л1.3 Э1 Э2 Э3	0

Пр	Тенденции в составе флота. Развитие промышленной базы	5	0,5	Л1.1 Л1.2	0
	судоремонта /Пр/			Л1.3 Э1 Э2 Э3	
Ср	Тенденции в составе флота. Развитие промышленной базы судоремонта /Cp/	5	3	Л1.1 Л1.2 Л1.3Л3.1 Э1 Э2 Э3	0
Лек	Техническое состояние судна. Надзор за техническим состоянием судна /Лек/	5	0,5	Л1.1 Л1.2 Л1.3 Э1 Э2 Э3	0
Пр	Техническое состояние судна. Надзор за техническим состоянием судна /Пр/	5	0,5	Л1.1 Л1.2 Л1.3 Э1 Э2 Э3	0
Ср	Техническое состояние судна. Надзор за техническим состоянием судна /Cp/	5	6	Л1.1 Л1.2 Л1.3Л3.1 Э1 Э2 Э3	0
Лек	Износы конструкций корпуса. Предотвращение износа корпуса судна /Лек/	5	0,5	Л1.1 Л1.2 Л1.3 Э1 Э2 Э3	0
Пр	Износы конструкций корпуса. Предотвращение износа корпуса судна /Пр/	5	0,5	Л1.1 Л1.2 Л1.3 Э1 Э2 Э3	0
Ср	Износы конструкций корпуса. Предотвращение износа корпуса судна /Cp/	5	6	Л1.1 Л1.2 Л1.3Л3.1 Э1 Э2 Э3	0
Ср	Повреждения корпусов. Диагностирование и дефектация корпусов /Cp/	5	6	Л1.1 Л1.2 Л1.3Л3.1 Э1 Э2 Э3	0
Лек	Методы определения технического состояния корпусов металлических судов. Диагностический комплекс для оценки технического состояния корпуса /Лек/	5	0,5	Л1.1 Л1.2 Л1.3 Э1 Э2 Э3	0
Ср	Методы определения технического состояния корпусов металлических судов. Диагностический комплекс для оценки технического состояния корпуса /Ср/	5	8	Л1.1 Л1.2 Л1.3Л3.1 Э1 Э2 Э3	0
Лек	Оценка технического состояния по износам групп связей. Оценка по остаточным деформациям /Лек/	5	0,5	Л1.1 Л1.2 Л1.3 Э1 Э2 Э3	0
Ср	Оценка технического состояния по износам групп связей. Оценка по остаточным деформациям /Ср/	5	8	Л1.1 Л1.2 Л1.3Л3.1 Э1 Э2 Э3	0
Лек	Влияние износа и остаточных деформаций обшивки на ходовые качества судна /Лек/	5	0,5	Л1.1 Л1.2 Л1.3 Э1 Э2 Э3	0
Ср	Влияние износа и остаточных деформаций обшивки на ходовые качества судна /Ср/	5	8	Л1.1 Л1.2 Л1.3Л3.1 Э1 Э2 Э3	0
Лек	Расчётный метод определения технического состояния судовых конструкций. Основные условия расчётного метода /Лек/	5	0,5	Л1.1 Л1.2 Л1.3 Э1 Э2 Э3	0
Пр	Расчётный метод определения технического состояния судовых конструкций. Основные условия расчётного метода /Пр/	5	0,5	Л1.1 Л1.2 Л1.3 Э1 Э2 Э3	0
Ср	Расчётный метод определения технического состояния судовых конструкций. Основные условия расчётного метода /Cp/	5	8	Л1.1 Л1.2 Л1.3Л3.1 Э1 Э2 Э3	0
Лек	Подготовительные и вспомогательные работы. Выбор и обоснование метода ремонта корпуса /Лек/	5	0,5	Л1.1 Л1.2 Л1.3 Э1 Э2 Э3	0
Пр	Подготовительные и вспомогательные работы. Выбор и обоснование метода ремонта корпуса /Пр/	5	0,5	Л1.1 Л1.2 Л1.3 Э1 Э2 Э3	0
Ср	Подготовительные и вспомогательные работы. Выбор и обоснование метода ремонта корпуса /Ср/	5	4	Л1.1 Л1.2 Л1.3Л3.1 Э1 Э2 Э3	0

п.	Ти	5	1 0.5	П1 1 П1 2	
Лек	Назначение линий реза. Подетальный метод ремонта /Лек/	5	0,5	Л1.1 Л1.2 Л1.3	0
				Э1 Э2 Э3	
Пр	Назначение линий реза. Подетальный метод ремонта /Пр/	5	0,5	Л1.1 Л1.2 Л1.3 Э1 Э2 Э3	0
C	И	5	2		0
Ср	Назначение линий реза. Подетальный метод ремонта /Ср/	3	3	Л1.1 Л1.2 Л1.3Л3.1 Э1 Э2 Э3	0
Ср	Секционные методы ремонта корпуса. Назначение припусков при	5	3	Л1.1 Л1.2	0
Ср	ремонте корпусных конструкций методом замены /Ср/	3	3	Л1.3Л3.1 Э1 Э2 Э3	
Ср	Размерные цепи. Обмеры с применением шлангового ватерпаса,	5	3	Л1.1 Л1.2	0
- r	отвеса реек и шергеней /Ср/			Л1.3Л3.1	
				Э1 Э2 Э3	
Ср	Оптические и лазерные методы обмеров обводов. Обмеры с	5	3	Л1.1 Л1.2	0
- r	применением координатомера /Ср/			Л1.3Л3.1	
				Э1 Э2 Э3	
Лек	Воспроизведение обводов деформированных участков корпуса по	5	0,5	Л1.1 Л1.2	0
	результатам обмеров прилегающих районов. Ремонт корпусных			Л1.3	
	конструкций правкой /Лек/			Э1 Э2 Э3	
Пр	Воспроизведение обводов деформированных участков корпуса по	5	0,5	Л1.1 Л1.2	0
1	результатам обмеров прилегающих районов. Ремонт корпусных			Л1.3	
	конструкций правкой /Пр/			Э1 Э2 Э3	
Ср	Воспроизведение обводов деформированных участков корпуса по	5	3	Л1.1 Л1.2	0
	результатам обмеров прилегающих районов. Ремонт корпусных			Л1.3Л3.1	
	конструкций правкой /Ср/			Э1 Э2 Э3	
Лек	Основы технологии тепловой правки. Термосиловая правка судовых	5	0,5	Л1.1 Л1.2	0
	конструкций /Лек/			Л1.3	
				Э1 Э2 Э3	
Пр	Основы технологии тепловой правки. Термосиловая правка судовых	5	2	Л1.1 Л1.2	0
	конструкций /Пр/			Л1.3	
				Э1 Э2 Э3	
Ср	Основы технологии тепловой правки. Термосиловая правка судовых	5	3	Л1.1 Л1.2	0
	конструкций /Ср/			Л1.3Л3.1	
				Э1 Э2 Э3	
Ср	Композитные покрытия. Ремонт корпуса подкреплениями /Ср/	5	3	Л1.1 Л1.2	0
				Л1.3Л3.1	
				Э1 Э2 Э3	
Ср	Проверка качества ремонта корпуса и техника безопасности.	5	3	Л1.1 Л1.2	0
	Контроль качества ремонта корпуса /Ср/			Л1.3	
				Э1 Э2 Э3	
Ср	Техника безопасности при выполнении корпусоремонтных работ.	5	3	Л1.1 Л1.2	0
	Окрасочные работы. Ремонт деревянных корпусных			Л1.3Л2.3	
	конструкций /Ср/			Э1 Э2 Э3	
ИКР	Технология технического обслуживания и ремонта судов /ИКР/	5	2	Л1.1 Л1.2	0
				Л1.3Л2.1	
				Л2.2	
				Л2.3Л3.1	
				Л3.2 Э1 Э2 Э3	
				J1 J2 J3	

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Значение техники в жизни общества и экономики страны. Место транспорта в материальном производстве.

Производственный процесс на транспорте. Характери-стика транспорта как составной части материального производства: орудия труда, предмет труда, продукция транспорта и ее особенности.

Технологические аспекты машиностроения и судостроения. Проектирование и изготовление объектов морской техники.

Судоремонтно-судостроительные пред-приятия [5].

2 Классификация судов

Конструктивные особенности.

17 Основы технологии тепловой правки. Термосиловая правка судовых конструкций

¹ Основные понятия и общие сведения

- 18 Композитные покрытия. Ремонт корпуса подкреплениями 0,5 4
- 19 Проверка качества ремонта корпуса и техника безопасности. Контроль качества ремонта корпуса 0,5 4
- 20 Техника безопасности при выполнении корпусоремонтных работ. Окрасочные работы. Ремонт де-ревянных корпус-ных конструкций 0,5 4

ИТОГО 10 10 84

3 Тенденции в составе флота. Развитие промышленной базы судоремонта

Специфика современной промышленной базы заключается в том, что она вклю-чает в себя смешанные судостроительносудоремонтные предприятия.

Предусмотрено строительство новых предприятий. Получат более широкое раз-витие также прогрессивные методы как агрегатный ремонт, секционный и блочные методы ремонта корпусов [3].

4 Техническое состояние судна. Надзор за техническим состоянием судна

Техническое состояние судна – это совокупное качество технического состояния судовых технических средств, его корпуса и конструкций.

Одним из важнейших свойств этого качества судна является его надёжность – сложное свойство, включающее в свою очередь, такие же свойства, как безопас-ность, долговечность, ремонтопригодность и сохраняемость.

Надзор за техническим состоянием судна осуществляет владелец флота в лице командного состава судов, групповых механиков в предприятиях приписки судов, служб судового хозяйства пароходств [7].

5 Износы конструкций корпуса. Предотвращение износа корпуса судна

Основным видом физического износа корпуса судна является коррозийно-эрозивный износ металла корпусных конструкций.

По характеру различают следующие виды коррозионных разрушений: общая коррозия, при которой наблюдается относительно равномерное разрушение поверх-ности металла; местная коррозия, при которой поражаются отдельные участки ме-талла. В зависимости от характера местных разрушений местная коррозия подразде-ляется на коррозию пятнами –неглубокие поражения отдельных участков; язвенную коррозию, при которой поражения поверхности носят характер отдельных язв или раковин; точечную коррозию, то есть, начальный процесс язвенной коррозии, когда разрушения носят характер точек диаметром 1 - 2 мм; межкристаллическую корро-зию – разрушения по границам кристаллов металла, что приводит к резкому сниже-нию прочностных характеристик металла [9].

6 Повреждения корпусов. Диагностирование и дефектация корпусов

Необходимость проведения ремонта корпусных конструкций вызывает их повре-ждение, которые подразделяются на эксплуатационные и аварийные. Под эксплуа-тационными повреждениями принято понимать деформации и трещины, появляю-щиеся в корпусных конструкциях при эксплуатации судов в тяжелых условиях.

Основными повреждениями корпуса вследствие вибрации являются трещины в наружной обшивке и во внутренних элементах корпусов, в пере руля, в направляю-щих насадках, в местах соединения гильмпортовых и дейдвудных труб с корпусом судна.

Характерным повреждением от местных перегрузок конструкций являются по-вреждения фальшбортов палуб и так называемых габаритных стенок под воздей-ствием грейферов крано

7 Методы определения технического состояния корпусов металлических

судов. Диагностический комплекс для оценки технического состояния корпуса

Износ элемента связи определяется весовым, микрометрическим или ультразву-ковым методом в двух-трёх характерных сечениях средней части судна (0,5 L) и в одном сечении в каждой оконечности. Износ каждой группы связей должен быть определён для всех элементов этой группы. Основными диагностическими парамет-рами для оценки технического состояния корпуса являются: стрелки прогиба и гео-метрические размеры вмятин в плане, деформация набора, наличие трещин в кон-струкциях, а также сведения об остаточных толщинах и износах сварных швов. Эти параметры подлежат непосредственным измерениям, а так называемые расчётные параметры позволяют определить техническое состояние корпуса: момент сопро-тивления - W, момент инерции - I, площадь поперечного сечения - F [4].

8 Оценка технического состояния по износам групп связей. Оценка по остаточным деформациям

Оценка технического состояния корпусов судов устанавливается по наихудшей оценке, определяемой износом основных групп связей корпуса и местными оста-точными деформациями. Техническое состояние корпусов по остаточным деформациям (вмятинам) полотнища вместе с набором устанавливают в зависимости от рас-пространения вмятин по ширине корпуса в одном сечении Σ bi /B для палубы и днища отдельно и по максимальным стрелкам прогиба вмятин – f, мм [6].

9 Влияние износа и остаточных деформаций обшивки на ходовые качества судна

Коррозионно-эрозионные износы наружной обшивки корпуса приводят не только к снижению прочностных характеристик корпуса, но и к значительному повышению сопротивления трения [1].

10 Расчётный метод определения технического состояния судовых конструкций. Основные условия расчётного метода

Оценка технического состояния корпуса устанавливается путём сопоставления измеренных в ходе дефектации износов и остаточных деформаций с нормативами, определёнными в расчёте общей прочности. Для этого должна быть выполнена серия расчётов предельного момента корпуса с целью получения зависимости пре-дельного момента от возможных дефектов.

Нормативы износов и остаточных деформаций устанавливаются исходя из обеспечения общей прочности корпуса для условий эксплуатации в проектном ре-жиме при оценке «годное». Расчётом определяются нормативные параметры износов и деформаций для средней части судна (по 0,25 L от миделя в нос и в корму) [7].

11 Подготовительные и вспомогательные работы. Выбор и обоснование ме-тода ремонта корпуса

Устранение повреждений и предупреждение прогрессирующих износов корпус-ных конструкций, особенно в подводной части, требует проведения значительного объёма подготовительных и вспомогательных работ, которые составляют 12-20% объёма ремонта судна.

Основное назначение подготовительных работ заключается в обеспечении досту-па к ремонтируемым элементам корпуса, особенно его подводной части. При этом ремонт подводной части корпуса осуществляется с частичным или полным его об -нажением [2].

12 Назначение линий реза. Подетальный метод ремонта

При ремонте корпусных конструкций заменой составляется техническая и техно-логическая документация. При назначении линий контура выреза и линий реза по конструкциям учитываются следующие правила:

- наименьшее допустимое расстояние между двумя взаимно параллельными сты-ковыми сварными монтажными соединениями обшивки – 200 мм, между взаимно параллельными стыковыми и угловыми сварными соединениями – 75 мм.
- стыковые сварные соединения обшивки и набора необходимо совмещать в од-ной плоскости, либо допускать их разность не менее чем на 150 мм;
- расстояние от линии реза полотнища и набора до ближайшего элемента набора и переборки принимается равным 0,25 соответствующей шпации;
- пересечение сварных соединений должно осуществляться под углом не менее 60°;
- углы вырезов и ввариваемых в них элементов следует скруглять радиусом не менее 5 S (S толщина обшивки).

Во всех случаях, когда это технически возможно и не вызывает существенного увеличения материалоёмкости, следует сохранять построечные сварные соединения [4].

13 Секционные методы ремонта корпуса. Назначение припусков при ремонте корпусных конструкций методом замены

Технология монтажа ремонтной секции осложняется необходимостью обеспече-ния повышенной точности её установки в вырез в корпусе судна.

Сложности этих операций обуславливаются значительными размерами и массой секции, неизбежными различиями в форме, размерах элементов секции и сопрягае-мых с нею конструкций, с применением, как правило, для компенсации погрешно-стей монтажных припусков.

14 Размерные цепи. Обмеры с применением шлангового ватерпаса, отвеса реек и шергеней

Под размерной цепью (РЦ) принято понимать совокупность размеров, образующих замкнутый контур и непосредственно участвующих в решении поставленной задачи. При расчётах РЦ могут решаться прямая и обратная задача. При решении прямой задачи, исходя из установленных требований к замыкающему звену, определяют номинальные размеры, допуски, координаты середин полей допусков и пре-дельные отклонения всех составляющих размерную цепь звеньев [1].

15 Оптические и лазерные методы обмеров обводов. Обмеры с применением координатомера

Методика обмеров с помощью оптических и лазерных приборов имеют большое количество вариантов, различаются типами и количеством применяемых приборов. Рассмотрим вариант применения одного теодолита (или лазера ПИЛ-1), поочередно

устанавливаемого в плоскостях контрольных шпангоутов. Первая операция включа-ет в себя разметку первой контрольной точки (базовой точки), а на стапель – палубе – линий следа ДП батокса и перпендикуляра к нему, проходящего через проекцию указанной точки.

16 Воспроизведение обводов деформированных участков корпуса по результатам обмеров прилегающих районов. Ремонт корпусных конструкций правкой

Для графического воспроизведения участков обводов корпуса производят постро-ения проекций контрольных точек с обеих сторон от деформированного участка. В размеченных точках восстанавливают перпендикуляры, на которых откладывают отрезки, равные замеренным ординатам.

Технологические процессы устранения остаточных деформаций корпусных кон-струкций посредством деформирования называют правкой. Правка конструкций возможна в «холодную» (без нагрева), тепловым методом («безударный» метод) и комбинированным методом, то есть с приложением нагрева и силового воздействия (термосиловая правка) [3].

17 Основы технологии тепловой правки. Термосиловая правка судовых конструкций

Тепловая правка основана на остаточном укорочении («подсадке») деформиро-ванной конструкции. Эффективность правки определяется величиной этой подсад-ки.

Сущность этого явления состоит в том, что нагреваемые участки конструкции, стремясь расшириться, оказываются сжатыми окружающим холодным материалом и пластически укорачиваются, а это приводит к натяжению холодных участков, то есть их выправлению. Температура нагрева, соответствующая достижению напря-жения на остывших участках предела текучести, является оптимальной температу-рой тепловой правки Topt [1].

18 Композитные покрытия. Ремонт корпуса подкреплениями

В отдельных случаях целесообразно для ремонта корпуса применение композит-ных покрытий.

Наибольшее распространение нашли так называемые трёхслойные конструкции, состоящие из двух несущих слоёв и размещённого между ними заполнителя. Назна-чение заполнителя – воспринимать местные нагрузки и обеспечивать совместную работу несущих слоёв.

Для придания конструкциям монолитности в бетонный заполнитель вводится сетка, изготовленная из прутка диаметром 3-5 мм, ячейкой 100×100 мм [2].

19 Проверка качества ремонта корпуса и техника безопасности. Контроль качества ремонта корпуса

Под качеством ремонта объекта следует понимать совокупность свойств, опреде-ляющих соответствие процесса ремонта требованиям нормативно — технической до-кументации. Качество ремонта корпуса судна обеспечивается на должном уровне специальной комплексной системой управления качеством.

Эта система включает в себя специальные службы предприятия, комплекс доку-ментации (стандарты предприятия), другие организационные и технические меро-приятия [9].

20 Техника безопасности при выполнении корпусоремонтных работ. Окрасоч-ные работы. Ремонт деревянных корпусных конструкций

Корпусные конструкции в целях предотвращения коррозионного износа подлежат обязательной окраске. Качество окрашенной поверхности в значительной степени зависит от соблюдения всего комплекса технологического процесса нанесения лако-красочных покрытий [4]

	6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ	
	6.1. Перечень видов оценочных средств	
Получение зачета		
	6.2. Темы письменных работ	
	6.3. Контрольные вопросы и задания	
1 Классификация морского флота		

- 2 Морские транспортные суда
- 3 Вспомогательные суда
- 4 Как разделяются суда по району плавания и материалу корпуса
- 5 Техническое состояние судна и надзор за техническим состоянием судна
- 6 Износы конструкций корпуса
- 7 Предотвращение износа корпуса судна
- 8 Повреждения корпусов. Диагностирование и дефектация корпусов
- 9 Методы определения технического состояния корпусов металлических судов
- 10 Диагностический комплекс для оценки технического состояния корпуса
- 11 Оценка технического состояния по износам групп связей
- 12 Оценка по остаточным деформациям
- 13 Влияние износа и остаточных деформаций обшивки на ходовые качества судна
- 14 Расчётный метод определения технического состояния судовых конструкций
- 15 Основные условия расчётного метода
- 16 Подготовительные и вспомогательные работы
- 17 Выбор и обоснование метода ремонта корпуса
- 18 Назначение линий реза
- 19 Подетальный метод ремонта
- 20 Секционные методы ремонта корпуса
- 21 Назначение припусков при ремонте корпусных конструкций методом замены
- 22 Размерные цепи
- 23 Виды обмеров
- 24 Воспроизведение обводов деформированных участков корпуса по результатам обмеров прилегающих районов
- 25 Основы технологии тепловой правки
- 26 Термосиловая правка судовых конструкций
- 27 Композитные покрытия
- 28 Ремонт корпуса подкреплениями
- 29 Контроль качества ремонта корпуса
- 30 Техника безопасности при выполнении корпусоремонтных работ
- 31 Технология проведения окрасочных работ на корпусных конструкциях
- 32 Требования безопасности при окраске корпуса и ремонт деревянных кон-струкций корпуса

6.4. Методические материалы, определяющие процедуры оценивания

Зачет по дисциплине направлен на оценку знаний, умений и навыков, характеризующих освоение части компетенции Контроль знаний студента осуществляется в соответствии с результатами его работы, при этом учитывается: - самостоятельная работа по изучению некоторых разделов и тем курса; посещаемость и активность участия на лекционных и практических занятиях;

- при итоговом контроле знаний студента оценочным критерием является полнота ответа студента на поставленные перед ним вопросы (устно или письменно);
- итоговый балл знаний студента складывается из текущего и итогового контроля:
- 1. работа на практических занятиях (доклады, обсуждения, устные ответы);
- 2. домашнее задание, реферат;
- 3. промежуточная контрольная работа;
- 4. зачет.

Зачёт – проводится в виде теста. Допускается проведение зачёта в устной или письменной форме.

Возможен автоматический зачет, без сдачи итогового тестирования. Для его получения студенту необходимо иметь 100% посещаемость (либо отработать пропущенные занятия), выполнение всех промежуточных контрольных работ на положительную оценку, успешная защита реферата, активная работа на практических занятиях.

	7. УЧЕБНО-МЕТОДИ	ЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИП	ЛИНЫ (МОДУЛЯ)
		7.1 Рекомендуемая литература	
		7.1.1. Основная литература	
	Авторы, составители	Заглавие	Издательство, год
Л1.1	Москаленко М. А.	Устройство и оборудование транспортных средств	Москва: Лань, 2013
Л1.2	Pτ/PsC,PμCP° P¤. P¤.	P PuPjrsPSC, CՐCՙԲԻ՚՚ԻՑPIC‹C… C,PuC…PSP&C‡PuCՐ՚֏֎P&C… CՐC՚ЂPuPrCՐC,PI	PP»P Preprecíc,repe: Php'pj Pepj. P'ppj. P'.P. Pkphplphp»Chcípere irs, 2012
Л1.3	PTCfPtCLIPeBPI P'. Pts., P'BsCbPsC BsP±PePS PЎ. P'.	PuCTPP&C,PEP&CfPj PiP& P&CfPSP&PIPPj C,PuP&CTPEPE PSP PrPuP¶PSP&CfC,PE PE PrP&PPiPSP&CfC,PEP&PE	P'P››P' PተኞPIPsCՐC,PsPe: PቴP'PJ PëPj. P'PrPj. P'.P. PkPμPIPμP››CЊСՐΡεPsP iPs, 2011
	1	7.1.2. Дополнительная литература	
	Авторы, составители	Заглавие	Издательство, год
Л2.1	PľCŕPrCЏРєВъРІ РЎ. Рђ.	PÿPµCPSPeC‡PµCЃPePCЏ CЌPeCЃPiP»CŕP°C,P°C†PeCЏ C,,P»PsC,P°: CŕC‡PµP±PSPsPµ PiPsCЃPsP±PePµ	Р'ла Р'РёРІВСҐС,РѣРє: РъР'РІ РёРј. Р'РНРј. Р'.Р. РкевельсРеВР iPs, 2010
Л2.2	Кулик Юрий Григорьевич, Сумеркин Юрий Васильевич	Технология судостроения и судоремонта: учебник	Москва: Транспорт, 1988
Л2.3	Лопырев Николай Кириллович, Немков П. П., Сумеркин Ю. В.	Технология судоремонта: учебник	Москва: Транспорт, 1981
		7.1.3. Методические разработки	
	Авторы, составители	Заглавие	Издательство, год
Л3.1	Вергунов Борис Дмитриевич, Кожевников Владимир Александрович	Методические указания к выполнению лабораторных работ по курсу "Технология судоремонта и судового машиностроения": метод. указ.	Новосибирск: НИИВТ, 1985
Л3.2	Исаенко Владимир Романович, Макагон Любовь Дмитриевна	Расчёты трудоёмкости судокорпусных работ: метод. указ. по вып. практич. раб. [для студ. напр. кораблестроение, океанотехника и системотехника объектов морской инфраструктуры, проф. "Кораблестроение"]	Новосибирск: СГУВТ, 2016
	-	ень ресурсов информационно-телекоммуникационной сети "Инт	ернет"
Э1	Электронная библиоте	•	
Э2	Электронная научно-техническая библиотека ФГБОУ ВО «СГУВТ»		
Э3	Открытые реестры ФИПС		

Операционная система Windows

Пакет прикладного программного обеспечения Microsoft Office

7.4 Перечень информационных справочных систем

Справочная Правовая Система КонсультантПлюс

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Назначение	Оборудование
Помещение дл	я Аудиторная доска; Комплект учебной мебели; Модели судов, 9 шт., Модель якорного
самостоятельной работ	ы устройства, 2 шт; Узлы набора корпуса, 12шт.; ПК - 7 шт., подключенных к сети
обучающихся	"Интернет" и обеспечивающих доступ в электронную информационно-образовательную
	среду Университета
Учебная аудитория дл	я Аудиторная доска; Комплект учебной мебели; Мультимедийное оборудование: проектор
проведения заняти	й (стационарный), экран (стационарный), ПК (стационарный); ПК – 11 шт. (в т.ч
практических занятий	преподавательский)
Учебная аудитория дл	я Аудиторная доска; Комплект учебной мебели; Мультимедийное оборудование: проектор
проведения заняти	й (стационарный), экран (стационарный), ПК (стационарный); ПК – 11 шт. (в т.ч
лекционного типа	преподавательский)
Учебная аудитория дл	я Аудиторная доска; Комплект учебной мебели; Мультимедийное оборудование: проектор
проведения групповых	и (стационарный), экран (стационарный), ПК (переносной)
индивидуальных консультаций	