Документ подписан простой электронной подписью

Информация о владельце: ФИО: Зайко Татьяна Ивановна

Должность: Ректор

Шифр ОПОП: 2019.26.05.06.03

Дата подписания: 21.08.7074 15:04:43 Уникальнь <u>ий программы и этограм</u> ТРАНСПОРТА

сf6863c76438e5984b0fd5e14e715ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ВОДНОГО ТРАНСПОРТА»

Год начала подготовк	2020	
		(год набора)
Шифр дисциплины:	Б1.О.15	
	(шифр дисциплины из учебного плана)	•

Рабочая программа дисциплины (модуля)

Сопротивление материалов

(полное наименование дисциплины (модуля), в строгом соответствии с учебным планом)

Составитель:	
профессор	
(должность)	
Сопротивления материалов и подъеми	но-транспортных машин
(наименование кафедры	
С.В. Викулов	
(И.О.Фамилия)	
Одобрена:	
	та «Морская академия»
	тета, реализующего образовательную программу)
Протокол № от «»	г.
число месяц	год
Председатель совета	К.С. Мочалин
председатель совета	(И.О.Фамилия)
На заседании кафедры Сопротивление мате	• • •
	машин
	наименование кафедры)
Протокол № от «»	г.
число мес	сяц год
Заведующий кафедрой	Л.В. Пахомова
Заведующий кафедрой	
	(II.O. Fullishin)
Согласована:	
Cornacobana.	
Руководитель рабочей группы по разраб	
	ов по направлению подготовки / специальности)
26.05.06 «Эксплуатация судовых эне	ергетических установок»
д.т.н , профессор	Б.О. Лебедев
(ученая степень) (ученое звание)	(И.О.Фамилия)

1 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесённых с планируемыми результатами освоения образовательной программы

1.1 Цели дисциплины

Целью дисциплины является обеспечение базового уровня знаний и навыков, необходимых для формирования способности выполнения поиска, анализа и выбора оптимального метода решения поставленной перед исследователем физической задачи используя информацию из отечественных и зарубежных источников, осуществлять математическое и численное моделирование физических процессов связанных с тематикой исследования, а также проводить анализ результатов проведенных численных экспериментов и делать оценку их достоверности.

1.2 Перечень формируемых компетенций

В результате освоения дисциплины (модуля) у обучающегося должны сформироваться следующие компетенции, выраженные через результат обучения по дисциплине (модулю), как часть результата освоения образовательной программы:

1.2.1 Общекультурные компетенции (ОК):

Дисциплина не формирует общекультурные компетенции.

1.2.2 Общепрофессиональные компетенции (ОПК):

Компетенция		Этапы формирования	Перечень планируемых результа- тов обучения по дисциплине
Шифр	Содержание	компетенции	Tob ooy lenna no anequiname
ОПК-2	Способен применять естественнонаучные и общеинженерные знания, аналитические методы в профессиональной деятельности	II-III	Знать: Основные законы естественнонаучных дисциплин, связанные с профессиональной деятельностью; Условия прочности и жесткости стержней и систем при растяжении-сжатии, кручении, изгибе и при комбинированном нагружении Уметь: Применять основные законы естественнонаучных дисциплин, связанные в профессиональной деятельности. Владеть: Навыками применения основных за-

	Компетенция	Этапы формирования	Перечень планируемых результа- тов обучения по дисциплине	
Шифр	Содержание	компетенции	тов обучения по дисциплине	
			конов естественнонаучных дисциплин, связанные в профессиональной деятельности.	
ОПК-3	Способен проводить измерения и наблюдения, обрабатывать и представлять экспериментальные данные	II-III	Знать: Способы измерений, записи и хранения результатов наблюдений, методы обработки и представления экспериментальных данных. Уметь: Обрабатывать экспериментальные данные, интерпретировать и профессионально представлять полученные результаты. Владеть: Навыками работы с измерительными приборами и инструментами.	

1.2.4 Профессиональные компетенции профиля или специализации (ПКС):

Дисциплина не формирует компетентности профиля или специализации.

1.2.5 Компетентности МК ПДНВ (КМК):

Дисциплина не формирует компетентности МК ПДНВ.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина (модуль) реализуется в рамках	базовой	части
	(базовой, вариативной или факульта-	
	тивной)	
основной профессиональной образовательной г	грограммы.	

3 Объем дисциплины (модуля) в зачетных единицах (з.е.) с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Для	заочной	формы обучения:
_	(очной, заочной)	

	Формы контроля			Всего часов			Всего з.е.			Kyne 2									
	.	ормы	контр	ОЛИ				ВТ	ом чи	сле	ВСС	10 3.6.		Kypc 2					
Экзамены	Зачеты	Зачеты с оценкой	Курсовые проекты	Курсовые работы	KP	По з.е.	По плану	Контактная работа	CP	Контроль	Экспертное	Факт	Лек	Лаб	Пр	КСР	СР	Контроль	3.e
		2				180	180	24	156		5	5	10	4	6	2	156		5
	в том числе тренажерная подготовка:																		

4 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведённого на них количества академических часов и видов учебных занятий

4.1 Разделы и темы дисциплины (модуля) и трудоёмкость по видам учебных занятий (в академических часах):

	Разделы и темы дисци-	Ле	eĸ	Л	аб	П	[p	СР			
№	плины (модуля)	0	3	О	3	О	3	О	3		
	2 курс – заочная форма обучения										
1	P	аздел 1:	«Прос	стое со	проти	вление»					
1.1	Основные понятия и определения								6		
1.2	Центральное растяже- ние – сжатие стержня		2		2		2		10		
1.3	Напряженно- деформированное состо- яние в точке тела								10		
1.4	Геометрические харак- теристики сечений		2				2		10		
1.5	Деформация сдвига. Кру- чение круглых валов		2						10		
1.6	Прямой поперечный из- гиб		2		2		2		26		
1.7	Перемещение сечений при изгибе		2						18		
	Всего:		10		4		6		90		
	2 курс	с – заочн	іая фор	ома обу	учения						
2	Раздо	ел 2: «С.	ложно	e conpo	отивлен	ние»					
2.1	Расчёт статически неопределимых неразрез- ных балок		2						10		
2.2	Теории предельных со- стояний при расчете на прочность при сложном напряженном состоянии								6		
2.3	Косой изгиб. Внецен- тренное растяжение или сжатие. Изгиб с кручением.								16		
2.4	Устойчивость цен- трально сжатых стержней. Задача Эйле- ра. Инженерные расче- ты стержней на устой- чивость								6		

	Разделы и темы дисци-	Лек		Лаб		П	[p	CP	
№	плины (модуля)	O	3	0	3	О	3	0	3
2.5	Продольно-поперечный изгиб								6
2.6	Расчет кривых брусьев								4
2.7	Динамическое нагружение. Удар. Вынужденные колебания. Резонанс. Циклическое нагружение. Усталость материалов.								14
2.8	Основы расчетов кон- струкции на выносли- вость. Концентрация напряжения . Методы экспериментального определения деформации и напряжения.								4
	Всего:		2						
	итого:		12		4	30	6		156

Примечания: О – очная форма обучения, З – заочная форма обучения.

4.2 Содержание разделов и тем дисциплины

2 курс – заочная форма обучения

Раздел 1: «Простое сопротивление»

Тема 1.1 Основные понятия и определения [1, 2, 7]

Введение: предмет и задачи курса. Модель деформируемого тела. Формы тел,

Тема 1.2 Внешние и внутренние силы. Метод сечений. Понятие о напряжениях. Центральное растяжение – сжатие стержня [1, 2, 7]

Виды опорных закреплений и внешних нагрузок. Определение компонент внутренних сил методом сечений. Понятия напряжений и их компонентов. Интегральные зависимости между внутренними силами и напряжениями, их связь с деформациями. Напряжения и деформации стержней при растяжении - сжатии. Перемещения сечений. Продольные и поперечные деформации стержней. Закон Гука. Условия прочности и жесткости при одноосном растяжении или сжатии.

Тема 1.3 Механические характеристики материалов. Расчёт статически неопределимых стержневых систем [1, 2, 7]

Экспериментальное исследование механических свойств материалов. Виды материалов. Диаграммы растяжения и сжатия. Характеристики прочности и жесткости материалов. Допускаемые напряжения. Условия прочности при растяжении или сжатии стержня. Расчет на действие нагрузок. Расчет на изменение температур. Монтажные усилия.

Тема 1.4 Анализ напряженно-деформированного состояния в точке тела [1, 2, 7]

Виды наряженных состояний и их анализ. Главные напряжения. Графическое представление напряженного состояния на круге Мора. Деформированное состояние и его анализ. Обобщенный и объемный закон Гука. Потенциальная энергия деформации.

Тема 1.5 Геометрические характеристики сложных сечений [1, 2, 7]

Статические моменты площадей и их использование для определения координат центра тяжести сечения. Осевой, центробежный и полярный моменты инерции. Вычисление моментов инерции составных сечений. Изменение моментов инерции при параллельном переносе и повороте осей. Главные моменты инерции. Ориентация главных осей. Круг инерции.

Тема 1.6 Деформация сдвига. Кручение круглого вала [1, 2, 7]

Напряженно-деформированное состояние при чистом сдвиге. Закон Гука при сдвиге. Зависимость между Е, G и *v* для изотропных материалов. Кручение валов. Эпюры крутящих моментов. Напряжения при кручении. Полярный момент инерции и полярный момент сопротивления. Углы закручивания. Условия прочности и жесткости при кручении. Определение диаметров валов.

Тема 1.7 Прямой изгиб статически определимых балок [1, 2, 7]

Изгиб прямого стержня в одной главной плоскости. Изгибающий момент (М) и поперечная сила (Q) в поперечном сечении балки и их эпюры.

Дифференциальные и интегральные соотношения Д.И. Журавского между силовыми факторами.

Нормальные напряжения при чистом изгибе. Условие прочности по нормальным напряжениям при изгибе балки.

Касательные напряжения в балках со сплошным прямоугольным сечением (формула Д.И. Журавского). Распределение касательных напряжений в других формах сечений. Проверка прочности по касательным напряжениям.

Углы поворота и прогиба балок. Дифференциальное уравнение изогнутой оси балки. Методы определения перемещений в балках: непосредственное интегрирование, метод начальных параметров, энергетический метод Мора-Максвелла. Правило А.И.Верещагина. Формулы трапеций и парабол (Симпсона). Условие жесткости.

2 курс – заочная форма обучения Раздел 2: «Сложное сопротивление»

Тема 2.1 Расчёт статически неопределимой балки [1, 2, 8]

Лишние связи. Степень статической неопределимости. Расчет статически неопределимой балки методом сил. Выбор рациональной основной и эквивалентной систем метода сил. Составление канонических уравнений. Способы определения коэффициентов. Построение эпюр внутренних силовых факторов.

Тема 2.2 Комбинированное нагружение стержней. Косой изгиб. Внецентренное растяжение-сжатие колонны. Трубчатый вал при изгибе с кручением. [1, 2, 8]

Комбинированное нагружение стержней. Теории прочности: наибольших нормальных напряжений, наибольших деформаций, наибольших касательных напряжений, предельной энергии изменения формы тела. Косой изгиб балок, как изгиб в двух главных плоскостях. Напряжения и перемещения при косом изгибе балок. Условие прочности. Внецентренное растяжение или сжатие стержней. Колонны при внецентренном сжатии. Распределение напряжений. Условия прочности. Нейтральная линия. Ядро сечения. Радиус инерции. Кручение с изгибом. Распределение напряжений. Применение гипотез прочности для определения диаметра вала.

Тема 2.3 Устойчивость центрально сжатого стержня [1, 2, 8]

Устойчивая и неустойчивая формы равновесия гибких стержней при сжатии. Критическая сила. Формула Л.Эйлера для идеально упругих стержней. Формула Ф.С.Ясинского при неупругом деформировании. Практические расчеты стержней на устойчивость. Гибкость стержня и ее влияние на величину коэффициента снижения основного допускаемого напряжения. Расчет на устойчивость составных стержней.

Тема 2.4 Динамические нагружения [1, 2, 8]

Виды динамических нагружений. Движение конструкций с ускорением. Ударное нагружение конструкций с одной степенью свободы. Динамический коэффициент. Внезапное нагружение. Продольный и поперечный удар. Вибрационное нагружение. Собственная и вынужденная частоты. Опасность резонанса.

Тема 2.5 Расчеты на усталость [1, 2, 8]

Усталость и выносливость материалов при циклическом нагружении. Виды циклов напряжений. Усталостные кривые. Диаграммы предельных амплитуд напряжений. Факторы, влияющие на усталость. Коэффициент запаса выносливости.

4.3 Содержание лабораторных работ

№ раздела (темы) дисциплины	Наименование лабораторных работ или деловых игр
	2 курс – заочная форма обучения
	Раздел 2: «Сложное сопротивление»
Тема 2.1 Расчёт статически неопределимых неразрезных балок	Работа 8. Определение реакции средней опоры двухпролётной неразрезной балки с консолями [6]. Работа 9. Определение опорного момента в заделке статически неопределимой балки [6].
Тема 2.3 Косой изгиб. Внецентренное растяжение или сжатие. Изгиб с кручением	Работа 10. Определение величины прогиба концевого сечения балки при косом изгибе [6]. Работа 11. Внецентренное растяжение полосы [6].
Тема 2.4 Устойчивость центрально сжатых стержней. Задача Эйлера. Инженерные расчеты стержней на устойчивость.	Работа 12. Определение величины критической силы сжатого стержня [6].
Тема 2.7 Динамическое нагружение. Удар. Вынужденные колебания. Резонанс. Циклическое нагружение. Усталость материалов	Работа 13. Действие ударной нагрузки на балку [6].

4.4 Содержание практических занятий

№ раздела (темы) дисциплины	Наименование практических занятий, семинаров
	2 курс — заочная форма обучения
I	Раздел 1: «Простое сопротивление»
Тема 1.2 Центральное растяжение сжатие стержня.	Расчет стержня ступенчато-переменного сечения на центральное растяжение-сжатие [3-6].
Тема 1.3 Напряжонно- деформированное состоя- ние в точке тела	Расчет статически неопределимых стержневых систем, работающих на растяжение-сжатие [3-6]. Анализ напряженно-деформированного состояния нагруженного стержня [3-6].
Тема 1.4 Геометрические характеристики сечений	Осевой, центробежный и полярный моменты инерции Главные моменты инерции. Ориентация главных осей. Круг инерции [3-6].
Тема 1.5 Деформация сдвига и кручение круглых валов.	Расчет круглого вала ступенчато-переменного сечения [3-6].
Тема 1.6 Прямой поперечный изгиб	Прочностные расчеты статически определимых балок на прямой поперечный изгиб [3-6].
Тема 1.7 Перемещение сечений при изгибе	Определение перемещений в статически определимых балках [3-6].

4.5 Курсовой проект или курсовая работа

Курсовой проект или курсовая работа не предусмотрены.

4.6 Самостоятельная работа. Контроль самостоятельной работы

В самостоятельную работу студента входит выполнение домашних расчетных заданий, подготовка к лекционным, практическим и лабораторным занятиям путем изучения соответствующего теоретического материала и оформления отчетов по результатам лабораторных работ.

Контроль самостоятельной работы студента осуществляется в ходе защиты расчётно-графических и лабораторных работ, и при проведении индивидуальных и групповых консультаций.

5 Фонд оценочных материалов для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

5.1 Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Контролируемая компетенция	Этапы фор- мирования компетенции	Наименование темы (раздела) дисциплины (модуля)	Наименование оценочного средства
ОПК -2	II- Формирование способностей III-Интеграция способностей	Тема 2.1Расчёт статически неопределимой балки Тема 2.2 Устойчивость центрально сжатого стержня Тема 2.3 Комбинированное нагружение стержней. Косой изгиб	Зачёт с оценкой на 2 курсе
ОПК-3	II- Формирование способностей III-Интеграция способностей	Тема 1.5 Геометрические характеристики сложных сечений Тема 1.6 Деформация сдвига. Кручение круглого вала Тема 1.7 Прямой изгиб статически определимых балок	Зачёт с оценкой на 2 курсе

5.2 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Шифр ком- пете- нции	Этапы форми- рования ком- петенции	Наимено- вание оценоч- ного средства	Показа- тели оценива- ния	Критерии оцени- вания	Шкала оце- нивания
ОПК-2	II- Формирование способностей III-Интеграция способностей	Зачёт с оценкой по дисци- плине	Итоговый балл	Итоговый балл 3 (удовлетворительно), 4(хорошо) или 5 (отлично) соответствует критерию оценивания этапа формирования компетенции «освоен». Итоговый балл 2 (неудовлетворительно) соответствует критерию оценивания этапа формирования компетенции «не освоен».	Шкала порядка с рангами: 2 (неудовлетворительно), 3 (удовлетворительно), 4 (хорошо), 5 (отлично). Дихотомическая шкала «освоена — не освоена»
				Итоговый критерий «зачтено» соот-	Дихотомиче- ская шкала

Шифр ком- пете-	Этапы форми- рования ком- петенции	Наимено- вание оценоч-	Показа- тели оценива-	Критерии оцени- вания	Шкала оце- нивания
нции	·	ного	ния		
		средства			
				ветствует критерию	«зачтено – не
ОПК-3	II-	Зачёт по	Итоговый	оценивания этапа	зачтено»
	Формирование	дисци-	контроль	формирования	
	способностей	плине	в виде	компетенции	
			зачёта	«освоен».	
	III-Интеграция			Итоговый критерий	
	способностей			«не зачтено» соот-	
				ветствует критерию	
				оценивания этапа	
				формирования	
				компетенции «не	
				освоен».	

- 5.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы
 - 5.3.1 Типовые теоретические вопросы по освоению дисциплины:

Этап II- Формирование способностей; Этап III-Интеграция способностей

Компетенции:

ОПК-2 «Способен применять естественнонаучные и общеинженерные знания, аналитические методы в профессиональной деятельности»; **ОПК-3** «Способен проводить измерения и наблюдения, обрабатывать и представлять экспериментальные данные»

- 1. Предмет науки о сопротивлении материалов.
- 2. Элементы конструкций и классификация внешних сил.
- 3. Основные допущения, принимаемые в модели деформируемого твердого тела.
 - 4. Понятие о расчетной схеме и виды опорных закреплений.
- 5. Определение внутренних усилий методом сечений. Компоненты внутренних сил.
 - 6. Понятие напряжений. Компоненты напряжений.
- 7. Растяжение и сжатие. Определение продольной силы. Эпюры продольных сил.

- 8. Продольная и поперечная деформации при растяжении-сжатии. Коэффициент Пуассона.
- 9. Определение напряжений в поперечном сечении при растяжениисжатии стержня. Эпюра нормальных напряжений.
- 10. Закон Гука для растяжения-сжатия. Модуль продольной упругости. Расчет стержней на жесткость.
 - 11. Диаграмма растяжения и механические свойства материалов.
- 12. Допускаемые напряжения. Расчеты на прочность по допускаемым напряжениям.
- 13. Статически неопределимые стержневые системы. Раскрытие статической неопределимости.
 - 14. Геометрические характеристики сечений. Общие понятия.
- 15. Статические моменты, сечения. Определение центра тяжести составного сечения.
 - 16. Осевые моменты инерции сечения. Пример вычисления.
- 17. Полярный момент инерции сечения. Пример вычисления для круглого сечения.
- 18. Моменты инерции относительно осей, параллельных центральным осям.
 - 19. Моменты инерции при повороте осей.
- 20. Главные оси и главные моменты инерции. Определение их положения.
- 21. Кручение валов. Определение крутящих моментов. Эпюра крутящих моментов.
 - 22. Закон Гука при чистом сдвиге. Модуль упругости при сдвиге.
 - 23. Определение касательных напряжений при кручении валов.
 - 24. Расчеты диаметров валов по условию прочности.
- 25. Углы закручивания. Расчеты диаметров валов по условию жесткости.
 - 26.Общее понятие об изгибе. Типы опор и балок.
- 27. Аналитическое определение поперечной силы и изгибающего момента при плоском изгибе.
 - 28. Эпюры поперечных сил и изгибающих моментов.
- 29. Дифференциальные и интегральные соотношения между q, Q и М.
 - 30. Нормальные напряжения при чистом изгибе.
- 31. Касательные напряжения при поперечном изгибе. Формула Журавского.
- 32. Расчеты на прочность при плоском изгибе. Рациональные формы сечений балок.
- 33. Перемещения сечений при изгибе. Дифференциальное уравнение изогнутой оси балки.
- 34. Определение перемещений сечений при изгибе способом непосредственного интегрирования.

- 35. Определение перемещений при изгибе методом начальных параметров. Универсальные формулы. Условие жёсткости при изгибе балки.
- 36. Энергетический метод определения перемещений. Интеграл Максвелла-Мора для вычисления перемещений при плоском изгибе.
- 37. Определение перемещений сечений балки путём вычисления интеграла Максвелла-Мора по правилу Верещагина, формулам трапеций и парабол (Симпсона).
- 5.3.2 Типовые теоретические вопросы к дифференцированному зачёту по дисциплине:

Этап III - Интеграция способностей

Компетенции: ОПК-2 Способен применять естественнонаучные и общеинженерные знания, аналитические методы в профессиональной деятельности»; ОПК-3 «Способен проводить измерения и наблюдения, обрабатывать и представлять экспериментальные данные»

- 38. Статически неопределимые балки. Степень статической неопределимости.
- 39. Устойчивость центрально сжатых стержней. Вывод формулы Эйлера для определения критической силы при продольном изгибе.
- 40. Виды комбинированного нагружения стержней и их внутренние силовые факторы.
 - 41 Косой изгиб. Внутренние силы и напряжения. Нейтральная линия.
- 42. Внецентренное растяжение или сжатие. Внутренние силы и напряжения. Нейтральная линия.
 - 43. Условие прочности при внецентренном растяжении-сжатии.
 - 44. Ядро сечения при внецентренном сжатии. Пример построения.
- 45 Условие прочности при совместном действии изгиба и кручения. Определение эквивалентного момента и диаметра круглого вала по третьей теории прочности.
 - 46. Продольно-поперечный изгиб. Внутренние силы и напряжения.
- 47. Формула для определения прогиба балки при продольно-поперечном изгибе. Эйлерова сила.
 - 48. Проверка прочности стержня при продольно-поперечном изгибе.
 - 49. Косой изгиб.
- 50. Диаграмма критических напряжений. Формула Ясинского при неупругом деформировании.
 - 5.3.3 Типовые практические задания по дисциплине:
 - 1. Растяжение сжатие стержня.
 - 2. Статически неопределимый стержень.

- 3. Геометрические характеристики составного сечения.
- 4. Кручение вала.
- 5. Изгиб бетонной балки.

5.3.4 Типовые практические задания к дифференцированному зачёту по дисциплине:

- 1. Определение перемещений при изгибе.
- 2. Расчет статически неопределимой балки.
- 3. Косой изгиб
- 4. Внецентренное нагружение колонны.
- 5. Трубчатый вал при изгибе с кручением.
- 6. Динамическое нагружение.
- 7. Устойчивость центрально сжатого стержня.

5.4 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

5.4.1 Методика оценки зачёта по дисциплине

Зачет по дисциплине направлен на оценку знаний, умений и навыков, характеризующих освоение этапов компетенций.

Зачёт ставится по итогам успешного выполнения всех лабораторных и практических работ, а также освоения теоретического материала, изученного как на лекциях, так и самостоятельно.

При условии своевременного выполнения всех работ выставляется оценка «зачтено» без специального собеседования. Оценка «не зачтено» — невыполнение в полном объеме работ, не владение материалом по теоретическому разделу курса.

5.4.2 Методика оценки дифференцированного зачёта по дисциплине

Проверка качества освоения программы курса после изучения дисциплины осуществляется в виде дифференцированного зачёта по итогам работы студента в течение 2-го курса. Методика оценки направлена на оценку умений и навыков, характеризующих этапы формирования компетенций: **ПК-2, ПК-29.**

Оценка 5 (отлично) ставится в случае выполнения и защиты студентом в установленный срок всех лабораторных работ и индивидуальных самостоятельных работ.

Оценка 4 (хорошо) ставится в случае выполнения студентом в установленный срок всех лабораторных работ и защиты не менее пяти индивидуальных самостоятельных работ.

Оценка 3 (удовлетворительно) ставится в случае выполнения студентом в установленный срок всех лабораторных работ и защиты не менее трех индивидуальных самостоятельных работ.

Во всех остальных случаях ставится оценка 2 (неудовлетворительно).

5.4.3 Методика оценки лабораторной работы

При защите лабораторных работ студенту задается два-три вопроса по теме лабораторной работы. В случае ответа на все поставленные вопросы, лабораторная работа считается защищенной.

6 Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

а) основная учебная литература

1.Степин, П.А. Сопротивление материалов [Электронный ресурс]: учебник / П.А. Степин. – Электрон. дан. – Санкт-Петербург: Лань, 2014. – 320 с. – Режим доступа: https://e.lanbook.com/book/3179. – Загл. с экрана.

б) дополнительная учебная литература

2. Павлов, П.А. Сопротивление материалов [Электронный ресурс]: учебник / П.А. Павлов, Л.К. Паршин, Б.Е. Мельников, В.А. Шерстнев. — Электрон. дан. — Санкт-Петербург: Лань, 2017. — 556 с. — Режим доступа: https://e.lanbook.com/book/90853. — Загл. с экрана.

7 Методические указания для обучающихся по освоению дисциплины (модуля)

- 3. Викулов, С.В. Задания по Сопротивлению материалов : контрол. дом. задачи / С. В. Викулов, Н. С. Инкижинов; М-во трансп. Рос. Федерации, Федер. агентство мор. и реч. трансп., ФГОУ ВПО "НГАВТ". Новосибирск: НГАВТ, 2010.-55 с.
- 4. Викулов, С.В. Сопротивление материалов : пособие к решению контр. домашних задач [для студ. дневной формы обучения]. Ч. 1 / С. В. Викулов, Н. С. Инкижинов, Л. В. Пахомова; М-во трансп. Рос. Федерации, Фед. агентство мор. и реч. трансп., ФБОУ ВПО "Новосиб. гос. академ. водн. трансп.". Новосибирск : НГАВТ, 2012. 49 с.
- 5. Викулов, С.В. Сопротивление материалов: пособие к решению контрол. дом. задач [для студ. дневной формы обучения]. Ч. 2 / С. В. Викулов, Н. С. Инкижинов, Л. В. Пахомова; М-во трансп. Рос. Федерации, Фед. агентство мор. и реч. трансп., ФБОУ ВПО "Новосиб. гос. академ. вод. трансп.". Новосибирск: НГАВТ, 2012. 49 с.
- 6. Викулов, С.В. Сопротивление материалов [Электронный ресурс]: метод. указ. по вып. лаб. работ / С. В. Викулов, Л. В. Пахомова, А. В. Рудько;

М-во трансп. Рос. Федерации, Фед. агентство мор. и реч. транспорта, ФГБОУ ВО "Сибир. гос. ун-т водного транспорта". — Новосибирск: СГУВТ, 2015. — 73 с. — Сетевой ресурс. Открывается с использованием Adobe reader версии 9.0 и новее.

8 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся

- 7. Викулов, С.В. Сопротивление материалов [Электронный ресурс]: методические указания к решению контрольных заданий для судентов, обучающихся по специальности. «Эксплуатация судовых энергитических установок» Ч. 1 / С. В. Викулов, Л. В. Пахомова, П. В. Сажин; М-во трансп. Рос. Федерации, Фед. агентство мор. и реч. транспорта, ФБОУ ВПО "Новосиб. гос. акад. водного транспорта". Новосибирск: НГАВТ, 2018. 38 с. Сетевой ресурс. Открывается с использованием Adobe reader версии 9.0 и новее.
- 8. Викулов, С.В. Сопротивление материалов [Электронный ресурс]: методические указания к решению контрольных заданий для судентов, обучающихся по специальности. «Эксплуатация судовых энергитических установок» Ч. 2 / С. В. Викулов, Л. В. Пахомова, П. В. Сажин, Инкижинов Н.С.; М-во трансп. Рос. Федерации, Фед. агентство мор. и реч. транспорта, ФБОУ ВПО "Новосиб. гос. акад. водного транспорта". Новосибирск: НГАВТ, 2018. 42 с. Сетевой ресурс. Открывается с использованием Adobe reader версии 9.0 и новее
- 9 Перечень ресурсов информационно-телекоммуникационной сети "Интернет" (далее сеть "Интернет"), необходимых для освоения дисциплины (модуля)
- 9. Каталог стандартов Росстандарт Федеральное агентство по техническому регулированию и метрологии [Электронный ресурс]. Режим доступа: http://www.gost.ru. Загл. с экрана.
- 10 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)
 - Электронно-библиотечная система «Лань».
 - Информационно-поисковая система «Консультант Плюс».
- 11 Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)

Наименование специализированных аудиторий, кабинетов, лабораторий	Перечень основного оборудования
Учебная аудитория для проведения за- нятий лекционного типа	Набор демонстрационного оборудования и учебно-наглядных пособий, в том числе: доска учебная, мультимедийный проектор, экран проекционный.
Учебная аудитория для проведения практических занятий	Набор демонстрационного оборудования и учебно-наглядных пособий, в том числе: доска учебная, мультимедийный проектор, экран проекционный.
Учебная аудитория для проведения ла- бораторных занятий (главный корпус ауд.115)	Набор демонстрационного оборудования и учебно-наглядных пособий. Лабораторные установки для испытания прочности.
Учебная аудитория для проведения групповых и индивидуальных консультаций (главный корпус ауд.115)	Набор демонстрационного оборудования и учебно-наглядных пособий.
Учебная аудитория для проведения, текущего контроля и промежуточной аттестации (главный корпус ауд.115)	Набор демонстрационного оборудования и учебно-наглядных пособий.
Учебная аудитория для самостоятельной работы обучающихся (зал электронных ресурсов, главный корпус ауд. 220)	Компьютерная техника с возможностью под- ключения к сети "Интернет" и обеспечением доступа в электронную информационно- образовательную среду организации.