Документ подписан простой электронной подписью

Информация о владельце: ФИО: Зайко Татьяна Ивановна

Должность: Ректор

Дата подписания: 24.08.2024 16:02:02

Уникальный программный ключ:

cf6863c76438e5984федер Аферор АГЕНТСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ВОДНОГО ТРАНСПОРТА»

Шифр ОПОП: 2014.13.03.02.01

Год начала подготовки (по учебному плану): 2020 (год набора)

Шифр дисциплины: Б1.В.ДВ.03.02

(шифр дисциплины из учебного плана)

Рабочая программа дисциплины (модуля)

Моделирование электроэнергетических и электротехнологических комплексов

(полное наименование дисциплины (модуля), в строгом соответствии с учебным планом)

Новосибирск

Составитель:	
доцент	
(должность)	
кафедры Электрооборудования и автоматики	
(наименование кафедры)	
М.Н.Романов	
Одобрена:	
Ученым советом Электромехани	ческого факультета
1	изующего образовательную программу)
Протокол № от « »	год
	
Председатель совета	Е.А. Григорьев
	(И.О.Фамилия)
	вания и автоматики
(наименов	вание кафедры)
Протокол № от «»	20 г.
Протокол № от «»	год
Заведующий кафедрой	Б.В.Палагушкин
	(килимаФ.О.И)
Согласована:	он 12.02.02
Руководитель рабочей группы по разработке ОПО	O11 по направлению 13.03.02
(наименование коллектива разработчиков по напр	•
«Электроэнергетика и электрот	схника»
л.т.н. лоцент	Е.В. Иванова
	(И.О.Фамилия)

1 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесённых с планируемыми результатами освоения образовательной программы

1.1 Цели дисциплины

Целью дисциплины является обеспечение базового уровня знаний по основам компьютерного моделирования электротехнических устройств и систем автоматического управления направления подготовки 13.03.02 «Электроэнергетика и электротехника».

В рамках дисциплины осваивается умение составления компьютерных моделей структурных схем проектируемых систем автоматического управления, обеспечивающих заданные требования к электроэнергетическим системам и комплексам, анализ полученных результатов моделирования, обоснования принятых решений.

1.2 Перечень формируемых компетенций

В результате освоения дисциплины (модуля) у обучающегося должны сформироваться следующие компетенции, выраженные через результат обучения по дисциплине (модуля), как часть результата освоения образовательной программы (далее – $O\Pi$):

1.2.1 Общекультурные компетенции (ОК):

Дисциплина не формирует общекультурные компетенции.

1.2.2 Общепрофессиональные компетенции (ОПК):

Дисциплина не формирует общепрофессиональные компетенции.

1.2.3 Профессиональные компетенции (ПК):

	Компетенция	Этапы формирования компетенции	Перечень планируемых результатов обучения по дисциплине				
Шифр	Содержание						
ПК-2	Способен строить физические и математические модели электрооборудования, схем, устройств и электротехнических установок различного функционального назначения, а также использовать стандартные программные средства их компьютерного моделирования	I - II	Знать: Основные правила работы с моделями структурных схем электроэнергетических и электротехнических комплексов. Уметь: Составлять модели структурных схем автоматики в пакетах прикладных программ. Анализировать результаты моделирования, подбирать параметры систем, обеспечивающие заданные технические свойства объектов автоматизации.				
ПК-3	Способен участвовать в проектировании энергообъектов и их элементов в соответствии с нормативными документами, разработке и сопровождении технической документации	III	Владеть: - Навыками работы с системами автоматизированного проектирования электроэнергетических и электротехнических комплексов.				

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина (модуль) реализуется в рамках	вариативной	части
	(базовой, вариативной или факульта-	
	тивной)	
основной профессиональной образовательной г	ірограммы.	

3 Объем дисциплины (модуля) в зачетных единицах (з.е.) с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Для	очной	формы обучения:
-	(очной или заочной)	

	Формы контроля					Всего часов			Всего з.е.		Курс 4								
	Ψ	ормы к	контро	JIM				ВТ	ом чи	сле	Deer 0 3.e.		Семестр 7						
Экзамены	Зачеты	Зачеты с оцен- кой	Курсовые про- екты	Курсовые работы	PITP	По з.е.	По плану	Контактная работа	CP	Контроль	Экспертное	Факт	Лек	Лаб	Пр	КСР	СР	Контроль	3.e.
	7					72	72	30	42		2	2		28		2	42		2
	в том числе тренажерная подготовка:																		

Для	заочной	формы обучения:
	(очной или заочной)	

	Формы контроля				Всего часов			Всего з.е.		Курс 4									
	-	эрмэг т	tonipo	· · · · · · · · · · · · · · · · · · ·				ВТ	ом чи	сле	Всс	10 5.0.				Ttype .			
Экзамены	Зачеты	Зачеты с оцен- кой	Курсовые про- екты	Курсовые работы	KP	По з.е.	По плану	Контактная работа	CP	Контроль	Экспертное	Факт	Лек	Лаб	Пр	КСР	СР	Контроль	3.e.
	4					72	72	12	60		2	2		8		4	60		2
	в том числе тренажерная подготовка:																		

4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведённого на них количества академических часов и видов учебных занятий

4.1 Разделы и темы дисциплины (модуля) и трудоёмкость по видам учебных занятий (в академических часах):

	Разделы и темы		Лек		аб	Пр		CP	
№	дисциплины (модуля)	O	3	О	3	О	3	О	3
	7 семестр — очная форма обучения, 4 курс— заочная форма обучения								
1	Моделирование электроэнергетиче- ских схем в приложении Simulink			24	6			40	70
2	Моделирование электрических схем в приложении SimPowerSystem			4	2			32	26
	ВСЕГО			28	8			42	60

4.2 Содержание разделов и тем дисциплины

Тема 1. Моделирование электроэнергетических схем в приложении Simulink [1,2,5]

Основные сведения о программе Matlab и Simulink. Основные разделы библиотеки Simulink. Работа с блоками библиотеки Simulink (редактирование, задание и изменение параметров и т.д.):

- блоки линейных элементов Continuous (интегратор Integrator, производная по времени Derivative, линейная передаточная функция Transfer Fcn);
- блоки источников и воздействий **Sources** (ступенчатое воздействие **Constant**, настраиваемое ступенчатое воздействие **Step**, синусоидальное воздействие **Sine Wave**);
- блоки регистрирующих устройств **Sinks** (цифровой дисплей **Display**, осциллограф **Scope**, графопостроитель **XУ Graph**);
- блоки математических операций (сумматор Sum, усилитель Gain, блок математических функций Math Function, блок тригонометрических функций Trigonometric Function);
- блоки преобразования сигналов Signal&Systems или Signal Routing (мультиплексор Mux, демультиплексор Demux);
- блоки нелинейных элементов Nonlinear (зона нечувствительности Dead Zone, насыщение Saturation, элементы с характеристиками релейного типа Relay);

Настройка параметров моделирования Simulation/Parameters (способ моделирования Fixed-step/Variable-step и метод расчёта, время моделирования Simulation time, шаг моделирования Fixed-step size, Max step size, Min step size).

Создание и редактирование модели. Исследование статических и динамических свойств типовых линейных и нелинейных звеньев автоматики с использованием моделей программы Simulink.Исследование статических и динамических свойств ли-

нейных и нелинейных систем автоматического управления с использованием моделей программы Simulink.

Использование Simulink LTI-Viewer для анализа линейных стационарных систем.

Подсистемы. Маскирование подсистем.

Tema 2. Моделирование электрических схем в приложении SimPowerSystem [1 - 3]

Библиотека SimPowerSystem (SPS). Связь библиотеки SPS с основной библиотекой Simulink.

Разделы библиотеки SPS:

- источники электрической энергии Electrical Sources (идеальный источник постоянного напряжения DC Voltage Source; идеальный источник переменного напряжения AC Voltage Source; идеальный источник переменного тока AC Current Source; трехфазный источник напряжения 3-Phase Source);
- соединители Connectors (нейтрали; коннекторы; шины);
- измерительные и контрольные устройства Measurements (измеритель токаCurrent Measurement; измеритель напряжения Voltage Measurement; мультиметр Multimeter; трёхфазный измеритель Three - Phase V - I Measurement);
- электротехнические элементы Elements (однофазные и трёхфазные последовательные и параллельные RLC-цепи RLC Branch; однофазные и трёхфазные последовательные и параллельные RLC-нагрузки RLC Load; однофазный Breaker и трёхфазный 3-Phase Breaker выключатели переменного тока; линейные однофазный Linear Transformer и трёхфазный Three-phase Linear Transformer трансформаторы);
- устройства силовой электроники **Power Electronics** (силовой диод **Diode**; тиристор **Thyristor**; биполярный IGBT транзистор **IGBT**; универсальный мост **Universal Bridge**);
- электрические машины Machines (машина постоянного тока DC Machine; асинхронная машина Asynchronous Machine; упрощенная модель синхронной машины Simplified Synchronous Machine).

Первичные навыки создания SPS-моделей электрических схем. Настройка параметров моделирования. Исследование простейших электрических схем: однофазных выпрямителей с RLC-сопротивлением, схем с линейным трансформатором, схемы подключения двигателя постоянного тока.

4.3 Лабораторный практикум

№ темы дисциплины	Наименование лабораторных работ
5 семестр- оч	ная форма обучения; 4 курс – заочная форма обучения
Тема 1. Моделирование электроэнергетических схем в приложении Sim-	Основные навыки работы с прикладным пакетом Simulink. Основные блоки библиотеки Simulink. [4]
ulink	Моделирование простейших электроэнергетических схем. [4]
	Моделирование структурных схем, замкнутых схем электроснабжения. [4]
	Инструмент Simulink LTI-Viewer. [4]
	Создание подсистем. [4]
	Исследование типовых нелинейностей линий с распределёнными параметрами. [4]
	Исследование моделей нелинейных систем электроснабжения. [4]
Тема 2. Моделирование электрических схем в приложении SimPowerSystem	Моделирование простейших электрических схем. [4]

4.4 Практические занятия

Не предусмотрены.

4.5 Курсовой проект

Не предусмотрен.

4.6 Самостоятельная работа. Контроль самостоятельной работы

В самостоятельную работу студента входит подготовка к лабораторным занятиям путем изучения соответствующего теоретического материала и оформления отчетов по результатам выполненных лабораторных работ. Подробные рекомендации по организации самостоятельной работы студента приведены в источниках, указанных в п. 8 данной рабочей программы.

Контроль самостоятельной работы студента осуществляется в ходе защиты лабораторных работ и при проведении индивидуальных и групповых консультаций.

5. Фонд оценочных материалов для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

5.1 Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Контролируемая компетенция	Этапы фор- мирования компетенции	Наименование темы (раздела) дисциплины (модуля)	Наименование оценочного средства
ПК-2	I-Формирование знаний II- Формирование способно-	Тема 1. Моделирование структурных схем в программе Simulink; Тема 2. Моделирование электрических схем в программе SimPowerSystem	Зачет по дисци-
	стей		плине
ПК-3	III – Интеграция способностей	Тема 1. Моделирование структурных схем в программе Simulink; Тема 2. Моделирование электрических схем в программе SimPowerSystem	

5.2 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Шифр компе- тенции	Этапы форми- рования ком- петенции	Наименова- ние оценоч- ного сред- ства	Показате- ли оцени- вания	Критерии оценивания	Шкала оценива- ния
	I- Формирование знаний			Итоговый зачёт соответ-	
ПК-2	II- Формирование способностей	Зачет по дисциплине	Итоговый зачёт	ствует критерию оценивания этапа формирования компетенции «освоен». Итоговый незачёт (неудовлетворительно) соответствует критерию	Шкала порядка с рангами: незачёт (неудовлетворительно) и зачёт. Дихотомическая шкала «освоена – не
ПК-3	III – Интеграция способностей			оценивания этапа формирования компетенции «не освоен».	освоена»

5.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

5.3.1 Компетенция ПК-2 «Способен строить физические и математические модели электрооборудования, схем, устройств и электротехнических установок раз-

личного функционального назначения, а также использовать стандартные программные средства их компьютерного моделирования», ПК-3 «Способен участвовать в проектировании энергообъектов и их элементов в соответствии с нормативными документами, разработке и сопровождении технической документации».

Этап I- Формирование знаний.

Примерные вопросы для защиты лабораторных работ:

- 1. Перечислите основные правила работы с моделями структурных схем систем электроснабжения.
- 2. Перечислите основные разделы библиотеки Simulink.
- 3. Каким образом осуществляется настройка параметров моделирования Simulation/Parameters?
- 4. Какие блоки преобразования сигналов **Signal&Systems** используются в Simulink?
- 5. Какие основные разделы используются в библиотеке SimPowerSystem?

Этап II – Формирование способностей.

Примерные задания при защите лабораторных работ:

1. Создать в программе Simulink модель структурной схемы системы электроснабжения, приведённой на рисунке 1

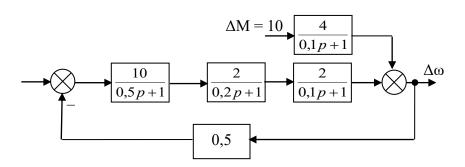


Рисунок 1 - Структурная схема 1

2. Создать в программе Simulink модель структурной схемы системы электроснабжения, приведённой на рисунке 2

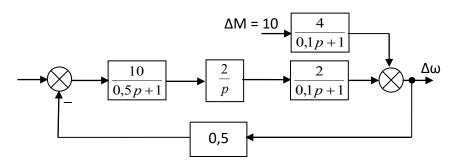


Рисунок 2 - Структурная схема 2

3. Снять переходные характеристики моделей, приведённых на рисунках 1, 2.

- 4. Снять переходные характеристики модели, приведённой на рисунке 1 при различных параметрах блоков (с использованием блока **Mux**). Оценить влияние коэффициента разомкнутой системы на устойчивость системы.
- 5. То же для модели, приведённой на рисунке 2.
- 6. Сохранить модель в файл.
- 7. Сохранить графики переходных процессов в файл PDF.
- 8. Настроить параметры моделирования Simulink с целью получения «гладких» графиков переходных процессов.
- 9. Настроить параметры блока **Scope** для размещения всего графика переходного процесса в окне просмотра.
- 10. Настроить параметры блока **Scope** для размещения двух графиков переходных процессов в одном окне просмотра (в двух окнах просмотра).

5.4 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

5.4.1 Методика оценки зачёта по дисциплине

Зачет по дисциплине выставляется по итогам работы обучающегося в течение семестра, при условии выполнения требований рабочей программы дисциплины. При своевременном выполнении и защите, требуемых работ оценка «зачтено» выставляется без специального собеседования.

Методика оценки лабораторных работ

При проведении и защите лабораторных работ оценивается достижение обучающимся целей, поставленных в работе в соответствии с заданием. Оценка *«зачте-но»* ставится обучающемуся, если он достиг всех целей, поставленных в работе, выполнил все задания по теме занятия, оформил их соответствующим образом, смог правильно ответить при необходимости на все вопросы преподавателя по существу выполненной работы.

Оценка *«не зачтено»* выставляется обучающемуся, если он не выполнил или не предоставил все задания по теме занятия, не смог правильно ответить на вопросы преподавателя по существу выполненной работы.

6. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

- а) основная учебная литература
- 1. **Оськин,** Д. А. Исследование систем автоматического управления [Электронный ресурс]: учебное пособие / Д.А. Оськин, В.Е. Маркин. Электрон. дан. Владивосток: МГУ им. адм. Г.И. Невельского, 2012. 160 с. Режим доступа: https://e.lanbook.com/book/20149. Загл. с экрана.

- б) дополнительная учебная литература
- **2. Поршнев, С. В.** Компьютерное моделирование физических процессов в пакете MATLAB [Электронный ресурс] : учебное пособие / С.В. Поршнев. Электрон. дан. Санкт-Петербург : Лань, 2011. 736 с. Режим доступа: https://e.lanbook.com/book/650. Загл. с экрана.
 - 3. **Ощепков, А. Ю.** Ощепков, А.Ю. Системы автоматического управления: теория, применение, моделирование в MATLAB [Электронный ресурс] : учебное пособие / А.Ю. Ощепков. Электрон. дан. Санкт-Петербург : Лань, 2013. 208 с. Режим доступа: https://e.lanbook.com/book/5848. Загл. с экрана.

7. Методические указания для обучающихся по освоению дисциплины (модуля)

4. **Гросс В.Ю.** Теория автоматического управления [Электронный ресурс] : метод. указ. к компьютерному варианту лабораторных работ по курсу "Теория автоматического управления" / В. Ю. Гросс, Е. Г. Гурова ; М-во трансп. Рос. Федерации; Федер. агентство мор. и реч. трансп.; ФБОУ ВПО "Новосиб. гос. акад. вод. трансп.". - Новосибирск : НГАВТ, 2014. - 54 с. : ил. - Библиогр.: с. 53. - Сетевой ресурс. Открывается с использованием Adobe reader версии 9.0 и новее.

При изучении дисциплины все рассматриваемые разделы рекомендуется сопровождать самостоятельным созданием и исследованием моделей в программах Simulink и SimPowerSystem. Достаточно подробно и с большим количеством примеров материал рассмотрен в работах И.В.Черных (пп. 6,7 в перечне ресурсов информационно-телекоммуникационной сети "Интернет"), находящихся в свободном доступе.

- 8. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся
- 5. **Шапиро, С.А.** Специфика самостоятельной работы студента в транспортном вузе. Теорет. ч.1 / С. А. Шапиро ; М-во трансп. Рос. Федерации, Новосиб. гос. акад. вод. трансп. Новосибирск : НГАВТ, 2006. 19 с.
- 9. Перечень ресурсов информационно-телекоммуникационной сети "Интернет" (далее сеть "Интернет"), необходимых для освоения дисциплины (модуля)
- 6. «Simulink: Инструмент моделирования динамических систем». [Электронный ресурс] / И.В. Черных. Электрон. текстовые дан. Режим доступа:

- <u>URL:http://matlab.exponenta.ru/simulink/book1/1.php</u>, свободный. Загл. с экрана
- 7. «SimPowerSystems: Моделирование электротехнических устройств и систем в Simulink». [Электронный ресурс] / И.В.Черных. Электрон. текстовые дан. Режим доступа: <u>URL:http://matlab.exponenta.ru/simpower/book1/3.php</u>, свободный. Загл. с экрана
- 10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)
 - 8. MatLAB version 6.0, Copyright © 2006 Parametric Technology Corporation. All Rights Re-served.—217 Mb (http://www.pts-russia.com/products/mathlab.htm).
 - 9. Пакет прикладных офисных программ, включающий в себя текстовый процессор, средства просмотра pdf-файлов и средства работы с графикой.
 - 10. Электронно-библиотечная система «Лань».

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Наименование специализированных аудиторий, кабинетов, лабораторий	Перечень основного оборудования				
Аудитория для проведения лабораторных работ (главный корпус ауд. 318)	Компьютерный класс, оснащённый на 18 мест. Компьютеры с программным обеспечением, локальная сеть, сетевое коммутационное оборудование				
Аудитория для самостоятельной работы (главный корпус, ауд. 116)	Компьютерная техника с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду организации.				