Документ подписан простой электронной подписью

Информация о владельце: ФИО: Зайко Татьяна Ивановна

Должность: Ректор

Дата подписания: 21.08.2024 14:30:05

Шифр ОПОП: 2011.26.05.06.01

Уникальный програмов ТРАНСПОРТА (f6863c7(d38e58844)) и РЕЧНОГО ТРАНСПОРТА (f6863c7(d38e58844)) и РЕЧНОГО ТРАНСПОРТА

(шифр дисциплины из учебного плана)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ВОДНОГО ТРАНСПОРТА»

Год начала подготовки (по учебному плану): 2019 (год набора)
Шифр дисциплины: Б1.О.21

Рабочая программа дисциплины (модуля)

Техническая термодинамика и теплопередача

(полное наименование дисциплины (модуля), в строгом соответствии с учебным планом)

Новосибирск

Составитель:

	доцент	
	(должность)	
Судовые эн	ергетические уст	ановки
	аименование кафедры)	
Γ.,	А. Долгополов	
	(И.О.Фамилия)	
Одобрена:		
Ученым советом	Сулом	еханического
	J 1	лизующего образовательную программу)
•		
Протокол № от «	»	20г.
чи	сло месяц	год
П		H A C C
Председатель совета		Д.А. Сибриков (и.о.Фамилия)
		(И.О.Фамилия)
На заседании кафедры		ование кафедры)
Протокол № от «	»	r.
протокозт 3 чи	сло месяц	
	,	•
Заведующий кафедрой		Г.С. Юр
заведующий кафедрой		(И.О.Фамилия)
		,
Согласована:		
	5 OHO	26.05.06
		П по специальности 26.05.06
		по направлению подготовки / специальности)
«Эксплуатация с	удовых энергети	ческих установок»
д.т.н. , профессор		Б.О. Лебедев
(ученая степень) (ученое звание)		(ИО Фамиция)

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

1.1. Цели дисциплины

Освоить основы дисциплин математического и естественно-научного цикла, рассматривающих распространение теплоты и преобразование её в различные виды работ.

1.2. Перечень формируемых компетенций

В результате освоения дисциплины у обучающегося должны сформироваться следующие компетенции, выраженные через результат обучения по дисциплине, как часть результата освоения образовательной программы (ОП):

1.2.1. Общекультурные компетенции (ОК):

Дисциплина не формирует общекультурные компетенции

1.2.2. Общепрофессиональные компетенции (ОПК):

Дисциплина не формирует общепрофессиональные компетенции

1.2.3. Профессиональные компетенции (ПК):

	Компетенция	Этапы форми- рования ком- петенции		М-	Перечень планируемых результатов обучения по дисциплине	
Шифр	Содержание	I	II	III	IV	
ПК-2	способностью и готовностью к самостоятельному обучению в новых условиях производственной деятельности с умением установления приоритетов для достижения цели в разумное время	x	x	x	x	Знать: Методы термодинамического анализа циклов СЭУ и пути повышения их термического КПД Уметь: Изображать и анализировать процессы и циклы тепловых двигателей и установок Владеть: Методами сравнительной оценки эффективности различных тепловых двигателей и установок
ПК-5	способностью на научной основе организовать свой труд, самостоятельно оценить ре-	Х	Х	х		Знать: Методы и средства проведения простейших теплотехнических экспериментов. Уметь: Производить расчёт идеальных циклов

	зультаты своей деятельности, владеть навыками самостоятельной работы, в том числе в сфере проведения научных исследований				тепловых двигателей и установок, теплообменных аппаратов и устройств Владеть: Методикой расчёта процессов теплообмена при разработке различных тепловых устройств и тепловых аппаратов
ПК-31	способность создавать теоретические модели, позволяющие прогнозировать свойства объектов профессиональной деятельности		x	x	Знать: Основные понятия теории теплообмена, законы термодинамики, характеристики топлив Уметь: Пользоваться методиками расчёта теплообмена, методами расчёта тепловыделения при сгорании углеводородного топлива Владеть: Методами термодинамического расчёта теплоэнергетических устройств и двигателей
ПК-32	способностью разрабатывать планы, программы и методики проведения исследований объектов профессиональной деятельности	x	x		Знать: Методы и средства проведения простейших теплотехнических экспериментов Уметь: Разрабатывать планы проведения экспериментальных многопараметровых исследований Владеть: Методикой расчёта процессов теплообмена при разработке различных тепловых устройств и теплообменных аппаратов
ПК-35	способность передавать знания по дисциплинам профессиональных циклов в системах среднего и высшего профессионального образования	х	х	х	Знать: Термодинамические основы работы тепловых двигателей Основы построения публичного выступления Уметь: Анализировать циклы тепловых двигателей Владеть: Навыками публичного выступления призащите курсовой работы

1.2.4. Профессиональные компетенции специальности (ПКС)

Дисциплина не формирует профессиональные компетенции специальности

1.2.5. Компетентности МК ПДНВ (КМК):

Дисциплина не формирует компетентности МК ПДНВ (КМК)

2.	место дисциплины в структуре оораз	зовательной проград	ММЫ
	Дисциплина реализуется в рамках	базовой	части
основі	ной профессиональной образовательной з	программы.	

3. Объем дисциплины в зачетных единицах (з.е) с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Для очной формы обучения

	Фо	10 MT	LICOLUTY	ОПП			Все	его ча	сов		Pag	го з.е							Кур	c 2,3						
	Ψ0	рмь	і контр	KILOU				ВТ	ом чи	сле	Всс	10 3.6			Ce	еместр	o 4					Ce	еместр	5		
Экзамены	Зачеты	Зачеты с	оценкой Курсовые	Курсовые	d.Id	По з.е.	По плану	Контактная работа	СЪ	Контроль	Экспертное	Факт	Лек	Лаб	Пр	КСР	СР	Контроль	3.e	Лек	Лаб	Пр	КСР	СР	Контроль	3.e.
5	4			5	4	216	216	108	81	27	6	6	33	11		4	24		2	27	27		6	57	27	4
			В ТО	ом чис	ле тр	енаже	рная	подго	товка	ı:																

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

4.1. Разделы и темы дисциплины и трудоемкость по видам учебных занятий (в академических часах):

	_		Вид	ды учеб	ных зан	ятий, вн	слючая	CP	
No	Разделы и темы	Л	Іек		аб		[p	C	P
	дисциплины	О	3	0	3	О	3	0	3
			2 ĸ	урс 4 се.	местр				
1		Раз,	дел 1 Техі	ническая	н термоді	инамика			
1.1	Теплосиловая установка	1							
1.1	из них, в интерак- тивной форме								
1.2	Рабочее тело и его параметры состояния	1							
	из них, в интерак- тивной форме								
1.3	Измерение пара- метров состояния	1		1				1	
1.5	из них, в интерак- тивной форме								
1.4	Термодинамиче- ские процессы и циклы	1		1				1	
	из них, в интерак- тивной форме								
1.5	Уравнения состо- яния	1		1				1	
1.3	из них, в интерак- тивной форме								
	Газовые смеси	1		1					
1.6	из них, в интерак- тивной форме								
1.7	Энергия рабочего тела и её виды	1						1	
1./	из них, в интерак- тивной форме								
1.8	Виды энергооб- мена	1						1	
1.0	из них, в интерак- тивной форме								
1.9	Первый закон термодинамики	1						1	

	_		Виды учебных занятий, включая СР										
№	Разделы и темы	J.	Іек		Габ		I p		СР				
	дисциплины	О	3	0	3	0	3	О	3				
•	из них, в интерак-												
	тивной форме												
	Энтропия	1											
1.10	из них, в интерак-												
	тивной форме												
	Теплоёмкость	1											
1.11	из них, в интерак-												
	тивной форме												
	Энтальпия и Пер-	_											
1 10	вый закон термо-	1						1					
1.12	динамики												
	из них, в интерак-												
	тивной форме												
	Изохорный про-	0,5		1				1					
1.13	цесс												
	из них, в интерак-												
	тивной форме Изобарный про-												
	цесс	0,5											
1.14	из них, в интерак-												
	тивной форме												
	Изотермический												
	процесс	0,5						1					
1.15	из них, в интерак-												
	тивной форме												
	Адиабатный про-	0.5						1					
1.16	цесс	0,5						1					
1.10	из них, в интерак-												
	тивной форме												
	Политропный												
	процесс и его	1		1				1					
1.17	обобщающее зна-	*		1				1					
1117	чение												
	из них, в интерак-												
	тивной форме Течение газов	1						1					
1.18		1						1					
1.10	из них, в интерак- тивной форме												
	Виды работ при												
	течении газов	1						1					
1.19	из них, в интерак-	1											
	тивной форме												
	Первый закон												
	термодинамики	1						1					
1.20	для потока												
	из них, в интерак-												
	тивной форме												
1.21	Сопла и диффузо-	1											

	_	Виды учебных занятий, включая СР										
No	Разделы и темы	J.	Іек	-	аб	П	P					
	дисциплины	О	3	0	3	О	3	О	3			
	ры											
	из них, в интерак-											
	тивной форме											
	Течение газа в											
	соплах и диффу-	1						1				
1.22	зорах											
	из них, в интерак-											
	тивной форме											
	Термодинамиче-											
	ское сжатие в	1		1				1				
1.23	компрессорах											
	из них, в интерак-											
	тивной форме											
	Второй закон тер-	1										
1.24	модинамики	1										
1.27	из них, в интерак-											
	тивной форме											
	Идеальный пря-	1		1				1				
1.25	мой цикл	1		1				1				
1.23	из них, в интерак-											
	тивной форме											
	Обобщённый цикл	1		1				1				
1.26	из них, в интерак-											
	тивной форме											
	Циклы ГТУ	1										
1.27	из них, в интерак-											
	тивной форме											
	Циклы РД	1						1				
1.28	из них, в интерак-											
	тивной форме											
	Циклы ДВС	1						1				
1.29	из них, в интерак-											
	тивной форме				<u> </u>							
	Превращение газа	1						1				
1.30	в пар и жидкость											
	из них, в интерак-											
	тивной форме											
	Определение па-	1		1				1				
1 21	раметров реально-	1		1				1				
1.31	го газа											
	из них, в интерак-											
	тивной форме											
	Дросселирование	1										
1.32	газа											
	из них, в интерак-											
	тивной форме											
1.33	Циклы паротур- бинной и холо-	2		1				1				
	оиннои и холо-		<u> </u>		1							

	_	Виды учебных занятий, включая СР									
№	Разделы и темы	Л	Іек		аб		[p	C	P		
	дисциплины	0	3	О	3	0	3	0	3		
	дильной устано-										
	вок										
	из них, в интерак-										
	тивной форме	1		-				1			
1.34	Влажный газ	1						1			
1.34	из них, в интерак- тивной форме										
	ИТОГО	33		11				24			
	111010		3 KVDC	5 семест	nn			2 .			
2				л 2 Тепло		ia					
	Виды теплообме-	1						2			
2.1	на	1		2				3			
2.1	из них, в интерак-										
	тивной форме										
	Основные опреде-										
	ления теплопере-	1		2				3			
2.2	дачи Закон Фурье										
	из них, в интерак-										
	тивной форме										
	Теплопроводность стенок однослой-										
	ной, многослой-	2		2				3			
2.3	ной и цилиндри-	2									
2.3	ческой										
	из них, в интерак-										
	тивной форме										
	Нестационарная										
	теплопроводность	1						3			
2.4											
	из них, в интерак-										
	тивной форме					1					
	Коэффициент										
2.5	теплоотдачи. За-	1						3			
2.5	кон Ньтона из них, в интерак-										
	тивной форме										
	Расчёт теплоотда-					1					
	чи с помощью	1		3				3			
2.6	теории подобия										
	из них, в интерак-										
	тивной форме										
	Теплоотдача при										
	фазовых превра-	3		6				3			
2.7	щениях					1	-				
	из них, в интерак-										
	тивной форме										
2.8	Тепловое излуче-	1						3			
	ние		<u> </u>		1	1	1	1			

	_		Ви	ды учеб	ных зан	ятий, вк	лючая (СР		
№	Разделы и темы дисциплины	J	Іек		аб		[p		CP	
	дисциплины	O	3	0	3	0	3	0	3	
	из них, в интерак- тивной форме									
2.9	Законы теплового излучения	1						3		
2.9	из них, в интерак- тивной форме									
2.10	Лучистый тепло- обмен между те- лами	1						3		
	из них, в интерак- тивной форме									
2.11	Излучение газов и пламени	1						3		
	из них, в интерак- тивной форме									
2.12	Теплопередача через плоскую однослойную стенку	1						3		
	из них, в интерак- тивной форме									
2.13	Теплопередача через плоскую многослойную стенку	2						3		
	из них, в интерак- тивной форме									
2.14	Теплопередача через цилиндрическую стенку	2		3				3		
	из них, в интерак- тивной форме									
2.15	Тепловая изоля- ция труб	2						3		
	из них, в интерактивной форме									
2.16	Виды теплообменных аппаратов	1						3		
	из них, в интерактивной форме									
2.17	Интенсификация теплопередачи в теплообменных аппаратах	1		3				3		
	из них, в интерак- тивной форме									
2.18	Оребрение по- верхностей	2		3				3		

	D		Ви	ды учебі	ных зан	ятий, вк	лючая (CP	
№	Разделы и темы	Л	leк	Л	аб	П	p	CP	
	дисциплины	0	3	0	3	0	3	0	3
	теплообменных аппаратов								
	из них, в интерак- тивной форме								
2.19	Расчёт теплооб- менных аппаратов	2		3				3	
2.19	из них, в интерак- тивной форме								
	ИТОГО	27		27				57	
	ВСЕГО	60		38				81	

Примечания: О – очная форма обучения, З – заочная форма обучения.

4.2. Содержание разделов и тем дисциплины

2 курс 4 семестр

Раздел 1 Техническая термодинамика

Тема 1.1 Теплосиловая установка (ТСУ) [1-3]

Предмет термодинамики и её методы. Термодинамическая система. Рабочее тело. Теплосиловая установка, её обязательные составные части и главные показатели. Отсутствие единства в показателях ТСУ.

Тема 1.2 Рабочее тело и его параметры состояния [1-3]

Определение рабочего тела и его агрегатные состояния. Параметры состояния рабочего тела и их деление на основные и производные, экстенсивные и интенсивные, полные и удельные. Равновесное и неравновесное состояния рабочего тела

Тема 1.3 Измерение параметров состояния [1-3]

Измерение объёма и температуры. Особенности измерения давления. Манометры, вакуумметры и барометры. Единицы измерения параметров состояния

Тема 1.4 Термодинамические процессы и циклы [1-3]

Определение процесса. Внешний признак процесса. Процессы равновесные и неравновесные, обратимые и необратимые. Круговые процессы (циклы). Причины изучения обратимых процессов и циклов. Графическое изображение равновесных состояний, процессов и циклов. Прямые и обратные циклы.

Тема 1.5 Уравнение состояния [1-3]

Определение уравнения состояния и его значение для нахождения параметров состояния. Уравнение состояния для идеальных газов. Газовая постоянная и способ её нахождения. Уравнение состояния для двух и более состояний. Представление уравнения состояния для реальных газов.

Тема 1.6 Газовые смеси [1-3]

Рабочее тело обычно — смесь газов. Определение параметров состояний идеальных газовых смесей. Уравнения состояний для газовой смеси и её компонентов. Задание смеси парциальными давлениями или парциальными объёмами.

Тема 1.7 Энергия рабочего тела и её виды [1-3]

Определение полной энергии. Составляющие полной энергии и их изменение в термодинамических процессах. Внутренняя и кинетическая энергии.

Тема 1.8 Виды энергообмена [1-3]

Теплота и работа как неравнозначные виды энергообмена. Уравнения теплоты.

Работа изменения объёма. Графическое изображение работы и теплоты.

Тема 1.9 Первый закон термодинамики [1-3]

Изменение полной энергии тела. Полная энергия при неперемещающемся рабочем теле. Подвод теплоты к неперемещающемуся рабочему телу Формулировка первого закона термодинамики. Совершение работы в циклах

Тема 1.10 Энтропия [1-3]

Энтропия как характеристика наличия теплообмена и как параметр состояния. Изменение энтропии в изолированной системе.

Тема 1.11 Теплоёмкость [1-3]

Теплоёмкость как способ определения теплоты. Зависимость теплоёмкости от различных факторов. Теплоёмкости удельные и средние. Структура теплоёмкостей.

Тема 1.12 Энтальпия и первый закон термодинамики [1-3]

Энтальпия как сумма двух видов энергии. Определение энтальпии через изобарную теплоёмкость. Энтальпия как параметр состояния. Формулировка Первого закона термодинамики через энтальпию.

Тема 1.13 Изохорный процесс [1-3]

Основные термодинамические процессы и объём их исследования. Определение изохорного процесса. Уравнение состояния. Первый закон термодинамики Графические изображения. Коэффициент использования теплоты

Тема 1.14 Изобарный процесс [1-3]

Определение изобарного процесса. Уравнение состояния. Первый закон термодинамики Графические изображения. Коэффициент использования теплоты

Тема 1.15 Изотермический процесс [1-3]

Определение изотермического процесса. Уравнение состояния. Первый закон термодинамики Графические изображения. Коэффициент использования теплоты

Тема 1.16 Адиабатный процесс [1-3]

Определение адиабатного процесса. Уравнение состояния. Первый закон термодинамики Графические изображения. Коэффициент использования теплоты

Тема 1.17 Политропный процесс и его обобщающее значение [1-3]

Формула политропного процесса. Показатель политропы и его значения. Графики частных случаев политропного процесса.

Тема 1.18 Течение газов [1-3]

Перемещение рабочего тела. Установившееся течение газа. Уравнение неразрывности

Тема 1.19 Виды работ при течении газов [1-3]

Вытеснение среды рабочим телом. Виды работ при течении газов. Потенциальная энергия давления.

Тема 1.20 Первый закон термодинамики для потока [1-3]

Вытеснение среды рабочим телом. Виды работ при течении газов. Потенциальная энергия давления.

Тема 1.21 Сопла и диффузоры [1-3]

Вытеснение среды рабочим телом. Виды работ при течении газов. Потенциальная энергия давления.

Тема 1.22 Течение газа в соплах и диффузорах [1-3]

Вытеснение среды рабочим телом. Виды работ при течении газов. Потенциальная энергия давления.

Тема 1.23 Термодинамическое сжатие в компрессорах [1-3]

Вытеснение среды рабочим телом. Виды работ при течении газов. Потенциальная энергия давления.

Тема 1.24 Второй закон термодинамики [1-3]

Определение второго закона термодинамики. Диаграммы для пояснения второго закона термодинамики. Выводы из второго закона термодинамики. Второй закон термодинамики для обратных циклов.

Тема 1.25 Идеальный прямой цикл [1-3]

Технические процессы идеального прямого цикла. Термодинамические процессы этого цикла. Порядок протекания процессов в идеальном прямом цикле. Меры для повышения КПД любого прямого цикла. Регенеративный цикл Карно.

Тема 1.26 Обобщённый цикл [1-3]

Графическое представление цикла Карно в масштабе. Необходимость замены изотермы на изохору или изобару. Термодинамические процессы обобщённого цикла. Типичные частные случаи обобщённого цикла. Параметры циклов. Зависимость термического КПД от параметров цикла.

Тема 1.27 Циклы газотурбинных установок (ГТУ) [1-3]

Схема цикла ГТУ с подводом теплоты при постоянном объёме. Изображение этого цикла в диаграмме давление-объём. Сравнение циклов ГТУ изохорным и изобарным подводами теплоты. Регенеративный цикл ГТУ.

Тема 1.28 Циклы реактивных двигателей (РД) [1-3]

Термодинамические циклы РД с адиабатным сжатием газообразного рабочего тела. Изображение этого цикла в диаграмме давление-объём; особенности установки. Турбореактивный двигатель (ТРД), схема его установки, изображение на диаграмме давление-объём и области применения. Реактивные двигатели с «изохорным» сжатием рабочего тела: жидкостно-ракетные (ЖРД) и ракетные двигатели твёрдого топлива (РДТТ).

Тема 1.29 Циклы двигателей внутреннего сгорания (ДВС) [1-3]

Три вида циклов ДВС: со смешанным подводом теплоты, с подводом теплоты при постоянном объёме и с продолженным расширением в турбине. Со смешанным подводом теплоты работают дизели. По циклу с подводом теплоты при постоянном объёме работают бензиновые и газовые ДВС.

Тема 1.30 Превращение газа в пар и жидкость [1-3]

Работа сжатия в циклах и её зависимость от состояния рабочего тела. Реальный газ и его диаграмма состояния. Степень сухости влажного пара и пограничные кривые.

Тема 1.31 Определение параметров реального газа [1-3]

Зависимости между параметрами состояния реального газа. Уравнение состояния реального газа, таблицы и диаграммы.

Тема 1.32 Дросселирование газа [1-3]

Понятие о дросселировании газа. Величины энтальпии и температуры при дросселировании. Дросселирование реального газа. Температура инверсии и её величина у большинства реальных газов.

Тема 1.33 Циклы паротурбинной и холодильной установок [1-3]

Водяной пар как важное рабочее тело. Схема и термодинамический цикл паротурбинной установки; особенности её работы. Холодильная установка, её схема и термодинамический цикл; особенности её работы.

Тема 1.34 Влажный газ [1-3]

Три вида смеси воздуха с парами какой-либо жидкости: влажный газ, ненасыщенный влажный газ, насыщенный влажный газ. Температура точки росы. Абсолютная и относительная влажности, влагосодержание и температура точки росы. Психрометр. Диаграмма влажного воздуха.

3 курс 5 семестр

Раздел 2. Теплопередача

Тема 2.1 Виды теплообмена [1-3]

Определение теплообмена. Тепловой поток и распределение температур в теле. Мощность теплового потока. Удельный тепловой поток. Три вида теплообмена. Сложные виды теплообмена.

Тема 2.2 Основные определения теплопроводности. Закон Фурье [1-3]

Теплопроводности неустановившаяся и установившаяся. Изотермы в сечении тела. Температурный градиент. Закон Фурье. Коэффициент теплопроводности и его величина для различных веществ.

Тема 2.3 Теплопроводность однослойной, многослойной и цилиндрической стенок [1-3]

Теплопроводность однослойной плоской стенки. Уравнение Фурье для такой стенки. Тепловое сопротивление стенки. Плоская трёхслойная стенка. Теплопроводность цилиндрической стенки.

Тема 2.4 Нестационарная теплопроводность [1-3]

Нестационарная теплопроводность характеризуется нестационарным температурным полем. Наиболее характерные из них: процессы нагревания и охлаждения. Изменение температур на поверхности и в центре тела связано с изменением теплового потока, что решается с помощью дифференциальных уравнений теплопроводности.

Тема 2.5 Коэффициент теплоотдачи. Закон Ньютона [1-3]

Определение конвективной теплоотдачи. Закон Ньютона. Коэффициент теплоотдачи и его зависимость от различных факторов. Примерные границы изменения коэффициента теплоотдачи в различных условиях.

Тема 2.6 Расчёт теплоотдачи с помощью теории подобия [1-3]

Возможность расчёта теплоотдачи аналитическим путём. Экспериментальный путь исследования теплоотдачи с помощью теории подобия. Критерии подобия и зависимости между ними. Порядок расчёта конвективной теплоотдачи.

Тема 2.7 Теплоотдача при фазовых превращениях [1-3]

Влияние фазовых превращений (кипения, конденсации и других) на характер теплоотдачи: при парообразовании, пузырьковом и плёночном кипениях, конденсации.

Тема 2.8 Тепловое излучение [1-3]

Понятие о тепловом излучении. Лучистая энергия с поверхностного слоя жидких и твердых тел. Объёмный характер излучения от газов. Преобразование лучистой энергии при попадании на другие тела. Тела абсолютно чёрные, белые, прозрачные и серые.

Тема 2.9 Законы теплового излучения [1-3]

Зависимость удельного лучистого теплового потока от температуры излучающего тела. Поглощательная способность серого тела. Зависимость излучаемой телом энергии от наклона лучистого потока к поверхности излучения.

Тема 2.10 Лучистый теплообмен между телами [1-3]

Лучистый теплообмен между двумя параллельными стенками. Лучистый теплообмен между двумя телами, когда одно целиком внутри другого. Лучистый теплообмен при наличии плоских экранов.

Тема 2.11 Излучение газов и пламени [1-3]

Особенности излучения газов и пламени. Степень черноты газов. Теплообмен излучением между газом и окружающей средой. Излучение пламени. Степень черноты пламени.

Тема 2.12 Теплопередача через плоскую однослойную стенку [1-3]

Определение теплопередачи и её зависимость от элементарных видов теплообмена. График теплопередачи через плоскую однослойную стенку, формула коэффициента теплопередачи.

Тема 2.13 Теплопередача через плоскую многослойную стенку [1-3]

График теплопередачи через плоскую трёхслойную стенку, формула коэффициента теплопередачи. Тепловое сопротивление теплопередачи.

Тема 2.14 Теплопередача через цилиндрическую стенку [1-3]

Тепловой поток через однослойную цилиндрическую стенку. Коэффициенты теплопередачи через однослойную и многослойную цилиндрические стенки.

Тема 2.15 Тепловая изоляция труб [1-3]

Цель тепловой изоляции и основное требование к ней. График тепловой изоляции трубы и формула полного линейного термического сопротивления. Критический диаметр изоляции. Зависимость теплопроводности изоляции от диаметра трубы.

Тема 2.16 Виды теплообменных аппаратов [1-3]

Назначение теплообменных аппаратов и их принципиальные виды. Разновидности рекуперативных теплообменных аппаратов.

Тема 2.17 Интенсификация теплопередачи в теплообменных аппаратах [1-3]

Пути интенсификации теплообменных аппаратов: Одновременное воздействие на оба теплоносителя, воздействие на теплоноситель с малым коэффициентом теплоотдачи.

Тема 2.18 Оребрение поверхностей теплообменных аппаратов [1-3]

Цель оребрения поверхностей. Характер распределения температур на оребрённой стенке. Типы оребрений труб

Тема 2.19 Расчёт теплообменных аппаратов [1-3]

Тепловой расчёт теплообменных аппаратов как самых распространённых. Искомой величиной является рабочая поверхность — стенка, омываемая с обеих сторон теплоносителями. Если она задана, то рассчитываются конечные температуры теплоносителей

4.3. Содержание лабораторных работ

№ темы дисциплины	Наименование лабораторных работ
	4 семестр 2 курс
Раздел 1.	Техническая термодинамики
Тема 1.3 Измерение параметров со- стояния	Измерение параметров состояния [6] 1 час
Тема 1.4. Термодинамические процессы и циклы	Исследование термодинамического процесса [6] 1 час
Тема 1.5. Уравнение состояния	Использование уравнения состояния [6] 1 час
Тема 1.6. Газовые смеси	Параметры газовых смесей [6] 1 час
Тема 1.13. Изохорный процесс	Экспериментальное исследование изохорного процесса [6] 1 час
Тема 1.17. Политропный процесс и	Основные термодинамические процессы [6] 1 час

№ темы дисциплины	Наименование лабораторных работ
его обобщающее значение	
Тема 1.23. Термодинамическое	Термодинамическое сжатие в компрессоре [6] 1 час
сжатие в компрессорах	
Тема 1.25. Идеальный прямой цикл	Экспериментальное исследование цикла теплового
	двигателя [6] 1 час
Тема 1.26. Обобщённый цикл	Термодинамические циклы с идеальным газом [6] 1 час
Тема 1.31. Определение параметров	Использование водяного пара [6] 1 час
реального газа	
Тема 1.33. Циклы паротурбинной и	Термодинамический цикл с водяным паром [6] 1 час
холодильной установок	
	5 семестр 3 курс
Pa	здел 2. Теплопередача
Тема 2.1. Виды теплообмена	Исследование теплопроводности однослойной плос-
	кой стенки [7] 2 часа
Тема 2.2. Основные определения	Исследование теплового сопротивления многослой-
теплопроводности. Закон Фурье	ной плоской стенки [7] 2 часа
Тема 2.3. Теплопроводность одно-	Исследование теплопроводности цилиндрической
слойной, многослойной и цилин-	стенки [7] 2 часа
дрической стенок	
Тема 2.6. Расчёт теплоотдачи с по-	Исследование теплопередачи [7] 1,5 часа
мощью теории подобия	
Тема 2.6. Расчёт теплоотдачи с по-	Исследование теплоотдачи при использовании тео-
мощью теории подобия	рии подобия [7] 1,5 часа
Тема 2.7. Теплоотдача при фазовых	Испытание теплоотдачи при естественной конвек-
превращениях	ции [7] 3 часа
Тема 2.7. Теплоотдача при фазовых	Испытание теплоотдачи при вынужденной конвек-
превращениях	ции [7] 3 часа
Тема 2.14. Теплопередача через ци-	Исследование эффективности теплоизоляции труб
линдрическую стенку	[7] 3 часа
Тема 2.17. Интенсификация тепло-	Исследование эффективности теплоизоляции труб
передачи в теплообменных аппара-	[7] 3 часа
тах	
Тема 2.18. Оребрение поверхностей	Исследование теплопередачи при оребрении
теплообменных аппаратов	поверхности [7] 3 часа
Тема 2.19. Расчёт теплообменных	Испытания двухтрубного теплообменного аппарата
аппаратов	[7] 3 часа

4.4. Содержание практических занятий Не предусмотрены

4.5. Курсовая работа

4.5.1. Соответствие темы (тем) дисциплины, работам, выполняемым в рамках курсового проектирования

№ раздела (темы) дисциплины	Работы, выполняемые по курсовому проектированию	
	5 семестр (3 курс)	
Pa	аздел 1. Техническая термодинамики	
1.2. Рабочее тело и его па-	Определение параметров p, v, T в характерных точках	
раметры состояния		
1.4. Термодинамические	Построение эскизов цикла в <i>p-v</i> и <i>T-s</i> диаграммах	
процессы и циклы		
	Определение теплоты и работы в процессах. Расчёт КПД и	
1.5. Уравнение состояния	мощности газового цикла. Построение диаграмм p - v и T - s в	
	масштабе	
1.10 Энтропия	Определение изменений энтропии в процессах	
1.30 Превращение газа в	Определение параметров в характерных точках и постро-	
пар и жидкость	ение цикла	
1.33. Циклы паротурбин-	паротурбин- Расчёт КПД и мощности парового цикла	
ной и холодильной устано-		
вок		

4.5.2. Структура курсовой работы

Объём		бъём		Ссылка на учеб-	
Наименование раздела	графиче- ская часть	текстовая часть	Часы	но-методическую литературу (раз- делы 6 - 9)	
1.2. Рабочее тело и его параметры состояния	-	3 листа фор- мата А4	2	[1-3,8]	
1.4. Термодинамические процессы и циклы	-	3 листа формата A4	2	[1-3,8]	
1.5. Уравнение состояния	1	4 листа фор- мата A4	2	[1-3,8]	
1.10 Энтропия	-	3 листа фор- мата A4	2	[1-3,8]	
1.30 Превращение газа в пар и жид- кость	-	5 листа фор- мата А4	6	[1-3,8]	
1.33. Циклы паротурбинной и холодильной установок	-	5 листа фор- мата А4	6	[1-3,8]	
Всего	-	30 страниц формата А4	20 часов		

4.6 Самостоятельная работа

Соответствие тем дисциплины самостоятельным работам, контроль самостоятельной работы

№ Темы			
дисциплины	Работы, выполняемые самостоятельно		
Тема 1.1 Теплосиловая	Рабочее тело. Основные термодинамические параметры со-		
установка	стояния. Основные законы идеальных газов [1-3]		
Тема 1.2 Рабочее тело и его	Смеси газов. Массовые, объёмные и молярные доли. Парци-		
параметры состояния	альное давление, парциальный объём. Кажущаяся молярная		
	масса и газовая постоянная смеси. [1-3]		
Тема 1.3 Измерение пара-	Теплота и работа. Полная и внутренняя энергия. Работа про-		
метров состояния	цесса и располагаемая работа. Теплоёмкость Энтальпия.		
T. 1.4 T.	Энтропия [1-3]		
Тема 1.4 Термодинамиче-	Политропный, адиабатный, изотермический, изобарный, изо-		
ские процессы и циклы	хорный процессы. Их анализ: изображение и определение		
	связи между основными термодинамическими параметрами [1-3]		
Тема 1.5 Уравнение состо-	Связь между основными термодинамическими параметрами		
яния	состояния. Уравнение состояния идеального газа [1-3]		
Тема 1.6 Газовые смеси	Фазовые превращения. Процесс образования водяного пара.		
	Теплота парообразования. Характерные состояния водяного		
	пара. Диаграммы воды и водяного пара. Свойства и характе-		
	ристики влажного воздуха [1-3]		
Тема 1.7 Энергия рабочего	Полная энергия рабочего тела. Виды энергии в термодинами-		
тела и её виды	Ke [1-3]		
Тема 1.8 Виды энергооб-	Теплообмен в энергетике. Способы передачи теплоты. Физи-		
мена Тема 1.9 Первый закон	ческие принципы процессов теплообмена [1-3] Возможности расходования теплоты. Теплота, внутренняя		
термодинамики	энергия и работа [1-3]		
Тема 1.10 Энтропия	Энтропия как характеристика теплообмена и как параметр со-		
Tema 1.10 Shipohini	стояния. Изменение энтропии в изолированной системе [1-3]		
Тема 1.11 Теплоёмкость	Теплоёмкость как способ определения теплоты. Зависимость		
	теплоёмкости от различных факторов [1-3]		
Тема 1.12 Энтальпия и	Энтальпия как сумма двух видов энергии. Определение эн-		
первый закон термодина-	тальпии через изобарную теплоёмкость. Формулировка Пер-		
мики	вого закона термодинамики через энтальпию [1-3]		
Тема 1.13 Изохорный про-	Основные термодинамические процессы и объём их исследо-		
цесс	вания. Определение изохорного процесса. Уравнение состоя-		
	ния. Первый закон термодинамики Графические изображе-		
	ния. Коэффициент использования теплоты [1-3]		
Тема 1.14 Изобарный про-	Определение изобарного процесса. Уравнение состояния.		
цесс	Первый закон термодинамики Графические изображения.		
TD 116 H	Коэффициент использования теплоты [1-3]		
Тема 1.15 Изотермический	Уравнение состояния. Первый закон термодинамики Графи-		
процесс	ческие изображения. Коэффициент использования теплоты		
Тема 1.16 Адиабатный	[1-3]		
7 '	Уравнение состояния. Первый закон термодинамики Графические изображения. Коэффициент использования теплоты		
процесс	[1-3]		
	[1-7]		

№ Темы дисциплины	Работы, выполняемые самостоятельно
	Vиорианна состояння Папруну рамам жаруа чина Газ 1
Тема 1.17 Политропный процесс и его обобщающее	Уравнение состояния. Первый закон термодинамики Графические изображения. Коэффициент использования теплоты
	[1-3]
значение Тема 1.18 Течение газов	L 3
тема 1.18 течение газов	Перемещение рабочего тела. Установившееся течение газа. Уравнение неразрывности [1-3]
Toyo 1 10 Puru pagar unu	
Тема 1.19 Виды работ при	Вытеснение среды рабочим телом. Виды работ при течении газов. Потенциальная энергия давления [1-3]
Течении газов	
Тема 1.20 Первый закон	Вытеснение среды рабочим телом. Виды работ при течении
термодинамики для потока	газов. Потенциальная энергия давления [1-3]
Тема 1.21 Сопла и диффузо-	Вытеснение среды рабочим телом. Виды работ при течении
ры	газов. Потенциальная энергия давления [1-3]
Тема 1.22 Течение газа в	Вытеснение среды рабочим телом. Виды работ при течении
соплах и диффузорах	газов. Потенциальная энергия давления [1-3]
Тема 1.23 Термодинамиче-	Вытеснение среды рабочим телом. Виды работ при течении
ское сжатие в компрессо-	газов. Потенциальная энергия давления [1-3]
Tayo 124 Propor payay	Оправанения разрана дамама тапуа учила полити
Тема 1.24 Второй закон	Определение второго закона термодинамики. Диаграммы для
термодинамики	пояснения второго закона термодинамики. Выводы из второ-
	го закона термодинамики. Второй закон термодинамики для
Taxa 1 25 Hanna	обратных циклов [1-3]
Тема 1.25 Идеальный пря-	Технические процессы идеального прямого цикла. Термоди-
мой цикл	намические процессы этого цикла. Порядок протекания про-
	цессов в идеальном прямом цикле. Меры для повышения
	КПД любого прямого цикла. Регенеративный цикл Карно [1-3]
Тема 1.26 Обобщённый	Графическое представление цикла Карно в масштабе. Необ-
,	ходимость замены изотермы на изохору или изобару. Термо-
цикл	динамические процессы обобщённого цикла. Зависимость
	термического КПД от параметров цикла [1-3]
Тема 1.27 Циклы газотур-	Схема цикла ГТУ с подводом теплоты при постоянном объё-
бинных установок	ме. Сравнение циклов ГТУ с изохорным и изобарным подво-
оннивих установок	дами теплоты. Регенеративный цикл ГТУ [1-3]
Тема 1.28 Циклы реактив-	Термодинамические циклы РД с адиабатным сжатием газооб-
ных двигателей	разного рабочего тела. Турбореактивный двигатель (ТРД).
пыл дын атолон	Реактивные двигатели с «изохорным» сжатием рабочего тела
	[1-3]
Тема 1.29 Циклы двигате-	Три вида циклов ДВС: со смешанным подводом теплоты, с
лей внутреннего сгорания	подводом теплоты при постоянном объёме и с продолженным
non bily ipointer o er opanini	расширением в турбине [1-3]
Тема 1.30 Превращение га-	Реальный газ и его диаграмма состояния. Степень сухости
за в пар и жидкость	влажного пара и пограничные кривые [1-3]
Тема 1.31 Определение па-	Зависимости между параметрами состояния реального газа.
раметров реального газа	Уравнение состояния реального газа, таблицы и диаграммы
Pariet per permitted of the	[1-3]
Тема 1.33 Циклы паротур-	Схема и термодинамический цикл паротурбинной установки.
бинной и холодильной	Холодильная установка, её схема и термодинамический цикл;
установок	особенности её работы [1-3]
Тема 2.1 Виды теплообме-	Определение теплообмена. Тепловой поток и распределение
на	температур в теле. Мощность теплового потока. Удельный
114	remireparty b resie. Intomitoerb remirebero noroka. 3 desibubili

№ Темы	
дисциплины	Работы, выполняемые самостоятельно
	тепловой поток. Три вида теплообмена [1-3]
Тема 2.3 Теплопровод-	Теплопроводность однослойной плоской стенки. Тепловое
ность однослойной, много-	сопротивление стенки. Плоская трёхслойная стенка. Тепло-
слойной и цилиндрической	проводность цилиндрической стенки [1-3]
стенок	
Тема 2.6 Расчёт теплоотда-	1
чи с помощью теории подо-	
бия	ними. Порядок расчёта конвективной теплоотдачи [1-3]
Тема 2.7 Теплоотдача при	1 1 1
фазовых превращениях	гих) на характер теплоотдачи: при парообразовании, пузырьковом и плёночном кипениях, конденсации [1-3]
Тема 2.9 Законы теплового	Зависимость удельного лучистого теплового потока от тем-
излучения	пературы излучающего тела. Поглощательная способность
	серого тела. Зависимость излучаемой телом энергии от
	наклона лучистого потока к поверхности излучения [1-3]
Тема 2.10 Лучистый теп-	Лучистый теплообмен между двумя параллельными стенка-
лообмен между телами	ми. Лучистый теплообмен между двумя телами, когда одно
	целиком внутри другого. Лучистый теплообмен при наличии
	плоских экранов [1-3]
Тема 2.11 Излучение газов	Степень черноты газов. Теплообмен излучением между газом
и пламени	и окружающей средой. Излучение пламени. Степень черноты
T. 0.10 T.	пламени [1-3]
Тема 2.13 Теплопередача	График теплопередачи через плоскую трёхслойную стенку,
через плоскую многослой-	формула коэффициента теплопередачи. Тепловое сопротив-
ную стенку	ление теплопередачи [1-3]
Тема 2.14 Теплопередача	
через цилиндрическую	
т	слойную цилиндрические стенки [1-3]
Тема 2.15 Тепловая изоля-	Цель тепловой изоляции и основное требование к ней. Гра-
ция труб	фик тепловой изоляции трубы и формула полного линейного
	термического сопротивления. Критический диаметр изоляции [1-3]
Тема 2.16 Виды теплооб-	Назначение теплообменных аппаратов и их принципиальные
менных аппаратов	виды. Разновидности рекуперативных теплообменных аппа-
	ратов [1-3]
Тема 2.17 Интенсификация	Пути интенсификации теплообменных аппаратов: Одновре-
теплопередачи в теплооб-	менное воздействие на оба теплоносителя; воздействие на
менных аппаратах	теплоноситель с малым коэффициентом теплоотдачи [1-3]
Тема 2.18 Оребрение по-	Цель оребрения поверхностей. Характер распределения тем-
верхностей теплообменных	ператур на оребрённой стенке. Типы оребрений труб [1-3]
аппаратов	
Тема 2.19 Расчёт теплооб-	Тепловой расчёт теплообменных аппаратов. Рабочая поверх-
менных аппаратов	ность. Расчёт конечных температур теплоносителей [1-3]

5. Фонд оценочных материалов для проведения промежуточной аттестации обучающихся по дисциплине

5.1.Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы в части дисциплины

Контролируемая компетенция	Этапы фор- мирования компетенции	Наименование темы (разде- ла) дисциплины	Наименование оценочного сред- ства
	I — формирование знаний II — формирование способностей	Раздел 1 Техническая термодинамики	Зачет
ПК-2	III - Интеграция способностей	Раздел 1 Техническая термодинамики	Курсовая работа
	IV - владение компетенцией	Раздел 2. Теплопередача	Экзамен
ПК-5	I – формирование знаний II – формирование способностей	Раздел 1 Техническая термодинамики	Зачет
	III - интеграция способностей	Раздел 2. Теплопередача	Курсовая работа
ПК-31	II – формиро- вание способ- ностей	Раздел 1 Техническая термоди- намики	Зачет
	III - интеграция способностей	Раздел 2. Теплопередача	Курсовая работа
ПК 22	I – формирова- ние знаний	Раздел 1 Техническая термодинамики	2
ПК-32	II – формиро- вание способ- ностей	Раздел 2. Теплопередача	Зачет
ПК-35	I – формирова- ние знаний	Раздел 1 Техническая термодинамики	Зачет
	II – формиро- вание способ- ностей	Раздел 1 Техническая термодинамики	Зачет
	III - интеграция способностей	Раздел 2. Теплопередача	Курсовая работа

5.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Шифр ком- пе- тен- ции	Этапы фор- мирования компетенции	Наименование оценочного средства	Показатели оценива- ния,	Критерии оценива- ния	Шкала оцени- вания
	I – формиро- вание знаний		Итоговый балл	Отметка «зачтено» соответствует критерию оценивания этапа формирования компетенции «осво-	Шкала порядка с рангами: «зачет»
	II – формиро- вание способ- ностей	Зачет		ен». Отметка «не зачтено» соответствует критерию оценивания этапа формирования компетенции «не освоен».	«незачет» Дихотомическа я шкала «освоена –не освоена»
ПК- 2	III - Интегра- ция способ- ностей	Выполнение и защита курсо- вой работы	Итоговая оценка	Итоговая оценка 3 (удовлетворительно), 4(хорошо) или 5 (отлично) соответствует критерию оценивания этапа формирования компетенции «освоен».	Шкала порядка с рангами: 2 (неудовлетворительно), 3 (удовлетвори-
	IV - владение компетенцией	Экзамен		Итоговый балл 2 (неудовлетворительно) соответствует критерию оценивания этапа формирования компетенции «не освоен»	тельно), 4(хорошо), 5 (отлично).
	I – формиро- вание знаний		Итоговый балл	Отметка «зачтено» соответствует критерию оценивания этапа формирования компетенции «осво-	Шкала порядка с рангами: «зачет»
ПК-5	II – формиро- вание способ- ностей	Зачет		ен». Отметка «не зачтено» соответствует критерию оценивания этапа формирования компетенции «не освоен».	«незачет» Дихотомическа я шкала «освоена –не освоена»

Шифр ком- пе- тен- ции	Этапы фор- мирования компетенции	Наименование оценочного средства	Показатели оценива- ния,	Критерии оценива- ния	Шкала оцени- вания
	III - Интегра- ция способ- ностей	Курсовая рабо- та	Итоговая оценка	Итоговая оценка 3 (удовлетворительно), 4(хорошо) или 5 (отлично) соответствует критерию оценивания этапа формирования компетенции «освоен». Итоговый балл 2 (неудовлетворительно) соответствует критерию оценивания этапа формирования компетенции «не освоен»	Шкала порядка с рангами: 2 (неудовлетворительно), 3 (удовлетворительно), 4(хорошо), 5 (отлично).
HIC 21	II – формиро- вание способ- ностей	зачет	Итоговый балл	Отметка «зачтено» соответствует критерию оценивания этапа формирования компетенции «освоен». Отметка «не зачтено» соответствует критерию оценивания этапа формирования компетенции «не освоен».	Шкала порядка с рангами: «зачет» «незачет» Дихотомическа я шкала «освоена –не освоена
ПК-31	III - Интегра- ция способ- ностей	Курсовая рабо- та	Итоговая оценка	Итоговая оценка 3 (удовлетворительно), 4(хорошо) или 5 (отлично) соответствует критерию оценивания этапа формирования компетенции «освоен». Итоговый балл 2 (неудовлетворительно) соответствует критерию оценивания этапа формирования компетенции «не освоен»	Шкала порядка с рангами: 2 (неудовлетворительно), 3 (удовлетворительно), 4(хорошо), 5 (отлично).

Шифр ком- пе- тен- ции	Этапы фор- мирования компетенции	Наименование оценочного средства	Показатели оценива- ния,	Критерии оценива- ния	Шкала оцени- вания
	I – формиро- вание знаний		Итоговый	Отметка «зачтено» соответствует критерию оценивания этапа формирования компетенции «осво-	Шкала порядка с рангами: «зачет»
ПК-32	II – формиро- вание способ- ностей	Зачет	балл	ен». Отметка «не зачтено» соответствует критерию оценивания этапа формирования компетенции «не освоен».	«незачет» Дихотомическая шкала «освоена –не освоена
	I – формиро- вание знаний	Зачет	Итоговый балл	Отметка «зачтено» соответствует критерию оценивания этапа формирования компетенции «осво-	Шкала порядка с рангами: «зачет» «незачет»
	II – формиро- вание способ- ностей			ен». Отметка «не зачтено» соответствует критерию оценивания этапа формирования компетенции «не освоен».	Дихотомиче- ская шкала «освоена –не освоена»
ПК-35	III - Интегра- ция способ- ностей	Курсовая рабо- та	Итоговая оценка	Итоговая оценка 3 (удовлетворительно), 4(хорошо) или 5 (отлично) соответствует критерию оценивания этапа формирования компетенции «освоен». Итоговый балл 2 (неудовлетворительно) соответствует критерию оценивания этапа формирования компетенции «не освоен»	Шкала порядка с рангами: 2 (неудовлетворительно), 3 (удовлетворительно), 4(хорошо), 5 (отлично).

5.3 Типовые контрольные задания и иные материалы, необходимые для оценки знаний, умений и (или) навыков, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

ЭТАП I - Формирование знаний Примеры заданий для зачета

- 1 Виды термодинамических циклов
- 2 Методы теплотехнических экспериментов
- 3 Основные определения теплопроводности

ЭТАП II - Формирование способностей Примеры заданий для зачета

- 1 Механические процессы термодинамических циклов и их очерёдность
- 2 Исходные данные для расчёта термодинамического цикла
- 3 Основные виды теплообмена

ЭТАП III - Интеграция способностей Примеры заданий для защиты курсовой работы

- 1 Термодинамические процессы обобщённого цикла
- 2 Виды рабочего тела в теплосиловых установках
- 3 Основные виды теплопроводности

ЭТАП IV - Владение компетенцией Примеры вопросов для экзамена

- 1 Термодинамические процессы прямых и обратных циклов
- 2 Типы теплосиловых установок
- 3 Основные понятия теории теплообмена

5.4 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

5.4.1 Методика оценки зачета

Зачет по дисциплине выставляется по итогам работы обучающегося в течение семестра, при условии выполнения требований рабочей программы дисциплины. При своевременном выполнении и защите, требуемых работ оценка «зачтено» выставляется без специального собеседования.

5.4.2 Методика оценки курсовой работы

Оценка «отлично» ставится студенту, который в срок, в полном объеме в соответствии с заданием выполнил курсовую работу. При защите и написании работы студент продемонстрировал навыки и умения, формируемые в результате освоения компетенции. Тема, заявленная в работе раскрыта полностью, все выводы студента подтверждены материалами. В ходе защиты студент демонстрирует необходимый уровень сформированности всех предусмотренных этапов компетенций, дает четкие ответы на поставленные вопросы, свободно владеет понятийным аппаратом.

Оценка «хорошо» ставиться студенту, который выполнил курсовую работу, но с незначительными замечаниями (описки, грамматические ошибки и т.д.). Тема работы раскрыта, но выводы носят поверхностный характер. В ходе защиты демонстрирует сформированные на достаточном уровне знания, умения и навыки, указанных в рабочей программе этапов освоения компетенции, допускает непринципиальные неточности при ответах на вопросы.

Оценка «удовлетворительно» ставится студенту, который допустил просчеты и ошибки в работе, не полностью раскрыл заявленную тему, сделал поверхностные выводы, слабо продемонстрировал аналитические способности и навыки работы с теоретическими источниками. При защите демонстрирует не до конца сформированные этапы компетенции и знания только основного материала, допускает ошибки принципиального характера при ответах на вопросы.

Оценка «неудовлетворительно» ставится студенту, который не выполнил курсовую работу, либо выполнил с грубыми нарушениями требований, не раскрыл заявленную тему, не выполнил практической части работы.

5.4.3 Методика оценки экзамена

Экзаменационный билет содержит три вопроса, направленные на оценку знаний, умений и навыков, характеризующих этапы формирования компетенции, охватывающих основные понятия, изучаемые в дисциплине.

Экзамен проводится в письменном виде.

Оценка за экзамен выставляется в соответствии с приведенными ниже требованиями.

- 2 (неудовлетворительно) выставляется обучающемуся, если хотя бы одно из заданий не выполнено или выполнено не в полном объеме и/или один или несколько ответов имеют ошибки в содержании и/или выводах, которые привели к значительному искажению итогового результата
- 3 (удовлетворительно) выставляется обучающемуся, если все задания выполнены в соответствии с требованиями экзаменационного билета, в полном объеме, однако один или несколько ответов имеют ошибки в содержании и/или выводах, которые повлекли незначительное искажение итогового результата.
- 4 (хорошо) выставляется обучающемуся, если все задания выполнены в соответствии с требованиями экзаменационного билета, в полном объеме, од-

нако один или несколько ответов имеют ошибки в содержании и/или выводах, не влияющие (или слабо влияющие) на итоговый результат.

5 (отлично) – выставляется обучающемуся, если все задания выполнены в соответствии с требованиями экзаменационного билета, в полном объеме и без ощибок.

6 Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

а) Основная литература

- 1. Ерофеев, В. Л.Теплотехника в 2 т., том 1. термодинамика и теория теплообмена [Электронный ресурс]: Учебник / Ерофеев В.Л., Пряхин А.С., Семенов П.Д. М: Издательство Юрайт, 2018. 308. (Бакалавр и магистр. Академический курс). 1-е издание. Internet access. ISBN 978-5-534-01738-0: 749.00, 4. Режим доступа: http://www.biblio-online.ru/book/652E53CB-3354-457F-B579-D52E501F0529. Загл. с экрана
- 2. Ерофеев, В. Л.Теплотехника в 2 т. том 2. энергетическое использование теплоты [Электронный ресурс] : Учебник / Ерофеев В.Л., Пряхин А.С., Семенов П.Д. М : Издательство Юрайт, 2018. 198. (Бакалавр и магистр. Академический курс). 1-е издание. Internet access. ISBN 978-5-534-01850-9 : 519.00, 4. Режим доступа: http://www.biblio-online.ru/book/652E53CB-3354-457F-B579-D52E501F0529 . Загл. с экрана
- 3. Ерофеев, В. Л.Теплотехника. практикум [Электронный ресурс] : Учебное пособие / Ерофеев В.Л. под ред., Пряхин А.С. под ред. М : Издательство Юрайт, 2018. 395. (Профессиональное образование). 1-е издание. Internet access. ISBN 978-5-534-06939-6 : 929.00, 4. Режим доступа: http://www.biblio-online.ru/book/DF3759CB-ED53-4C48-9E83-1BAD6F4437BD . Загл. с экрана

б) дополнительная литература

- 4 Луканин В.Н, Теплотехника (Текс): Учеб. для вузов/ В.Н. Луканин, М.Г. Шатров, Г.М. Камфер, С.Г. Нечаев, И.Е. Иванов, Л.М. Матюхин, К.А. Морозов/ М.: Высш. шк., 2000. 671 с
- 5 Сборник задач по теплотехнике (Текст): учебное пособие/ Б.А. Колапков, В.Д. Сисин, А.М. Пичурин, О.Г. Хатеев/ Новосибирск: Новосиб. Гос. Академ. Водн. Траснс., 2006 157 с.

7 Методические указания для обучающихся по освоению дисциплины

6 Колпаков Б.А. Лабораторный практикум по теплотехнике: метод. указания по выполнению лабораторных работ (Текст, ЭБ): /Б.А. Колапков, В.Д. Сисин/ - Новосибирск: Новосиб. Гос. Акад. Вод. Транс., 2010 – 34 с (48).

- 7 Колпаков Б.А. Термодинамический анализ комбинированной установки. Методические указания по выполнению курсовой работы по дисциплине «Теплофизические основы судовой энергетики» для студентов специальности 120200— судовые энергетические установки.— Новосибирск НГАВТ, 1999. 22с.
- 8 Сисин В.Д. Термодинамические процессы в судовых энергетических установках: методические указания по выполнению курсовой работы по дисциплине «Техническая термодинамика и теплопередача» /В.Д. Сисин. Новосибирск: НГАВТ. 2013. 36 с.

8. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

9 Новиков, И. И. Термодинамика [Электронный ресурс] / Новиков Иван Иванович; И. И. Новиков. - Москва: Лань, 2009. - 589 с.: ил. - (Учебники для вузов. Специальная литература). - Предм. указ.: с. 586-587. - ISBN 978-5-8114-0987-7. — Режим доступа: https://e.lanbook.com/book/286. - Загл. с экрана

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет, необходимых для освоения дисциплины

10 Сибирский государственный университет водного транспорта [Электронный ресурс]. – Режим доступа: http://www.ssuwt.ru, свободный. – Загл. с экрана.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

- Пакет прикладных офисных программ, включающий в себя текстовый процессор, средства просмотра pdf-файлов и средства работы с графикой.
 - Комплект презентаций.
 - -Электронно-библиотечная система «Лань» https://e.lanbook.com/.

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специализированных аудиторий, кабинетов, лабораторий с указанием номера кабинета и корпуса, в котором они расположены	Перечень основного оборудования
Учебная аудитория для проведения лекци- онных занятий	Учебно-наглядные пособия: доска учебная, мультимедийный проектор, экран проекционный
Учебная аудитория для проведения лабораторных занятий.	Учебно-наглядные пособия: доска учебная, мультимедийный проектор, экран проекционный, класс компьютерный
Учебная аудитория для самостоятельной работы обучающихся (Учебнолабораторный корпус № 1, ауд. 307)	Компьютерная техника с возможностью под- ключения к сети "Интернет" и обеспечением доступа в электронную информационно- образовательную среду организации.
Учебная аудитория для проведения курсового проектирования (выполнения курсовых работ),	Компьютерное оборудование с необходимым программным и методическим обеспечением.